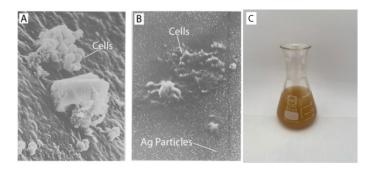


# SILVER NANOPARTICLES FOR GENERATING CERAMIC SURFACES WITH GERMICIDE PROPERTIES


Dr. Joaquín Arranz Aperte. Laura Kuret Rodríguez. Berta Arranz Aperte.

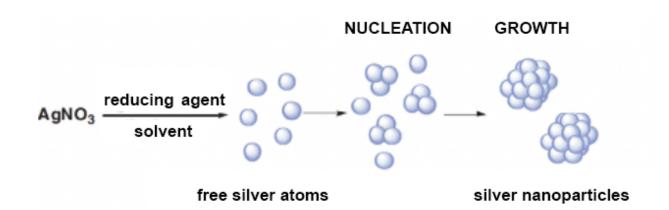
ADITIVOS CERÁMICOS SL. Technical Department. Spain

### **ABSTRACT**

The bacteriostatic additive **NANOSILVER AG**® is a colloidal dispersal of silver nanoparticles (AgNPs). AgNPs are able to create an antibacterial effect in treated ceramic surfaces and contribute permanent hygienic bacteriostatic properties to the vitreous surface.






**Figure A)** Staphylococcus aureus on an untreated surface. Figure B) Cell break-up on a surface doped with silver nanoparticles. Figure C) Visual appearance of Nanosilver AG.

Exposure to AgNPs prevents cell proliferation<sup>1</sup> (Fig. 1). Treatment with silver of Staphylococcus aureus causes cell dehydration by damage to the membrane (Fig. 2).

#### **METHOD AND GREEN SYNTHESIS**

For the use and application of AgNPs in ceramics, Aditivos Cerámicos S.L. has opted for an aqueous synthesis method that meets the following requirements:

- Compatibility of the resulting product with ceramic formulations.
- Appropriate nanoparticle size for providing the ceramic surface with good antibacterial protection.
- Use of "green synthesis", minimising waste and resources using reducing agents and stabilisers of natural origin.



<sup>&</sup>lt;sup>1</sup> J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt., J. B. Kouri, J. T. Ramírez, M. J. Yacaman, *Nanotechnology*, **2005**, 16, 2346–2353



## **CHARACTERISATION OF THE AGNPS OBTAINED**

Among the various characterisation methods<sup>2</sup> described in the literature for AgNP, the determination of the UV-Vis absorption spectrum appeared highly appropriate, as it is a non-destructive method that provides fast and accurate information.

The absorption spectrum of the product obtained in our synthesis exhibited a band corresponding to surface plasmon with a maximum at 412 nm (Fig. D), which was consistent with the existence of small-sized spherical nanoparticles.

| Diameter | nm λ <sub>max</sub> |
|----------|---------------------|
| 10       | 392.1               |
| 20       | 400.8               |
| 30       | 405.6               |
| 40       | 412.3               |
| 50       | 420.9               |
| 60       | 431.5               |
| 70       | 443.8               |
| 80       | 458.3               |
| 90       | 474.6               |
| 100      | 492.8               |
|          |                     |

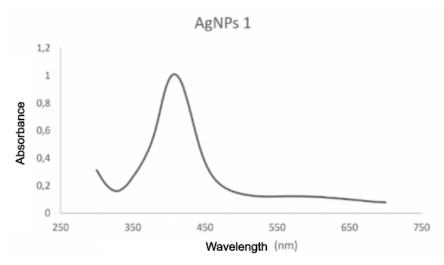
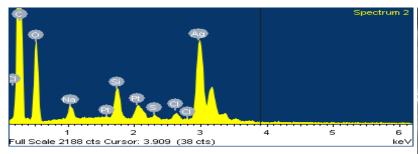




Figure D) absorption spectrum of the synthesised AgNPs.

This experimental observation was compared with X-ray diffraction (XRD) analysis (Fig E) and scanning electron microscopy (SEM) (Fig. F).





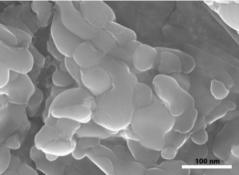



Figure F) mounds of AqNPs in the product after calcining the polymer coating (SEM route).

<sup>&</sup>lt;sup>2</sup> Xi-Feng Zhang, Zhi-Guo Liu, Wei Shen, and Sangiliyandi Gurunathan "Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches" Int J Mol Sci. 2016 Sept; 17(9): 1534.



### **APPLICATION**

AgNPs are able to provide surfaces with bactericidal properties. This effectiveness has been validated for different ceramic industries:

- Floor tiles, wall tiles, and trims or special pieces
- · Ceramic sanitary ware and tableware
- Ceramic worktops and large sizes







# **ADVANTAGES OF USING AGNPS IN CERAMICS**

- ✓ Minimum impact on final cost
- ✓ High effectiveness with low proportioned quantities
- ✓ Permanent antimicrobial effect
- ✓ The original design is maintained
- ✓ Thermal stability above 1300°C
- ✓ Non-allergen. Causes no cutaneous sensitivity
- ✓ UV lightfast and lasts on the substrate
- ✓ Resistance to abrasion and cleaning in flooring