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ABSTRACT 
 

From a fire engineering perspective, this paper tests a hypothesis in which 
machine learning (ML) can be used to derive generalized material properties for ceramic 
tiles (CTs) as insulation under fire conditions. As such, this study showcases a thorough 
comparison between the behavior of commonly available CTs, and insulations in 
temperatures ranging between 25 to 1000 °C. Findings of this work advocate the use 
of CTs (or reclaimed CTs) as favorable finishing and interior lining materials to realize 
improved structural fire performance and fire response management. In addition, our 
analysis shows that CTs, when selected properly, can behave as thermal shields as 
opposed to synthetic composite materials often used in linings and flooring which could 
easily combust under fire conditions. In addition, we note that integrating ML techniques 
to analyze and develop material models is proving helpful in modernizing the fire 
assessment of materials and structures. The outcome of this work is expected to be of 
interest to architects, first responders, building officials, and structural engineers. 
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INTRODUCTION  
 

In the construction industry, building materials include concrete, timber, and 
metals [1,2]. With the exception of timber, construction materials do not combust and 
have been shown to have an adequate performance and stability under elevated 
temperatures (within 25-500 °C) which is beneficial under fire conditions [3–5]. 
However, other types of materials can also be used on the outside or inside of buildings 
such as plastics, and their derivatives. Those materials melt and are easily combustible 
around 100-300 °C. For example, the 24-storey Grenfell tower (London, UK) underwent 
a major fire incident in 2017. The aforenoted fire started on 14 June 2017, and then 
quickly spread to upper floors on one side of the tower. This fire caused 72 deaths and 
over 70 injuries and significant property damage. Ongoing investigations tied the poor 
performance of the synthetic polymeric cladding to the rapid spread of fire [6,7].  

Proper analysis on materials used in construction requires a thorough evaluation 
of both thermal and mechanical properties. While ambient testing is possible and with 
ease, testing materials at high temperatures is complex. This is due to the lack of: 
expertise, standardized testing methods, and testing equipment [8–10]. As a result, 
only a few studies on high-temperature properties are available [11–13]. From a fire 
protection point of view, thermal properties such as density, specific heat capacity, and 
thermal conductivity are of importance as they describe molecular-level chemical 
sensitivity to heat and physical integrity to fire. Heat causes chemical degradation via 
pyrolysis, an irreversible chemical reaction, or via thermal oxidation by both heat and 
oxygen. When the temperature reaches a critical point, the majority of bonds fail, 
resulting in disintegration.  

It is for the above noted fire incident, and good material properties of traditional 
materials, that building codes often favor non-combustible or inert construction 
materials for fire resistance [14] since excessive temperature can permanently change 
material properties. This paper carries an investigation to examine the hypothesis that 
CTs, can be comparable to commonly used insulation materials. This paper reviews 
temperature-dependent thermal properties of CTs and then analyzes such properties 
using machine learning to develop generalized temperature-dependent models for these 
materials. 
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HIGH TEMPERATURE PROPERTIES  

Thermal energy and material interaction result in atomic and molecular scale 
changes. Some of those changes are not reversible because materials may lose volatile 
compounds with heat, oxidize to form gases, or release fumes from burning materials. 
Therefore, a significant portion of heat-caused change can be summed by tracing 
property changes in density, heat capacity, and thermal conductivity. This section 
reviews these three properties for ceramic tiles.  

Figure 1 shows the density changes in CTs with temperature from ambient to 
1000°C based on a collection of studies [14–27]. This figure clearly shows two unique 
trends: (1) the density of CTs is fairly stable up to 1000°C, and (2) density of CTs could 
potentially slightly increase with rise in temperature. The stable nature of CTs is often 
attributed to the lack of atomic or molecular changes such as losing volatile compounds 
and oxidation products [28]. Another reason would be due to the firing-based 
fabrication of CTs which occurs at high temperatures. During this firing process, a 
number of processes take place. For example, raw materials lose water at ~100°C, 
organic matters decompose at ~200°C, they dehydroxylate at ~400°C, silica inverts at 
~500 °C, carbonates decompose at ~800 °C, and finally sintering and glass transition 
occur at ~1000 °C [28]. Thus, once CTs cool down, these materials turn inert wherein 
all reactions including any other heat-absorbing and emitting reactions, have been 
completed (i.e. that is, their chemical composition is unlikely to change, thereby 
maintaining stable densities with heat up to 1000°C).  

 

 

Fig. 1 Variation of density in CTs as a function of temperature 
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Thermal conductivity measures the ability of a material to transfer one unit of 
heat. Dehydration, Dehydroxylation and decarbonation reactions reduce thermal 
conductivity of CTs [29], as well as unevenly distributed high porosity which also reduce 
thermal conductivities [15,29–39](see Fig. 3). On the other hand, the specific heat 
describes the amount of heat required to raise a unit mass of material a unit 
temperature. Fig. 2 also shows that CTs have relatively constant heat capacities from 
ambient to 1000°C. Generally, water, organic compounds, and hydroxyl group absorb 
heat for molecular vibrations; the molecule motions results in kinetic energy transfer to 
neighboring particles. Lack of these compounds as free molecules to interact with heat 
could keep CT heat capacity low and nonfluctuating with temperature. 

 

  

 

 

(a) Variation of thermal conductivity  
 
 

 
Temperature (°C) 
 

(b)   Variation of specific heat 

Fig. 3 Sample of properties of CTs under fire 
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MACHINE LEARNING MODEL 

The rationale behind using ML to arrive at a holistic understanding of CTs’ 
behavior under high temperatures arises from the unique capability of ML to identify 
patterns hidden within observations. From this view, artificial neural networks (ANN) 
will be used. ANNs encompass a set of layers that are to be arranged in an optimized 
topology. Each of these layers contains a number of neurons. A typical illustration of an 
ANN is shown in Fig. 4. This figure shows three different layers. The first layer, called 
the input layer, contains the temperature-dependent material properties. The first layer 
is also connected to middle or hidden layer(s). The hidden layer(s) has the ability to 
establish linear and/or non-linear relations through transformative operations. On the 
other side, the hidden layer(s) is also connected to the output layer. In this work, a 
multilayer perception ANN that has “feed-forward back-propagation and supervised 
learning”, as inspired by topology of the human brain, is used to develop the ANN [40], 
and seen in [41]. 

 

 

Fig. 4 Layout of an ANN 

 

Once the above topology of the ANN is defined, the newly developed ANN is then 
used in the training stage. In this stage, the ANN is primed to understand how do CTs 
property patterns change under elevated temperatures. The goal is to realize a holistic 
interpretation that exemplifies the thermal properties of common CTs. An ANN can be 
built through the deep learning tool in MATLAB [42]. Before the ANN analysis starts, 
the compiled data, as obtained from a literature review and that was plotted earlier, is 
first randomly arranged to minimize and limit bias of a specific study, CT type, or testing 
procedure [43]. Then, this data is split into two sets. The first set (made of 70% of all 
data points) is used to train the ANN and the remaining set of data were used to test 
the performance of ANN. This split percentage was arrived at from suggestions of similar 
works [44,45]. 

The training stage of this ANN starts by analyzing temperature-dependent 
thermal properties (say, values of specific heat at target temperatures; 100, 200, 300… 
and 800°C, as reported by various researchers, and so on for other properties). This 
analysis applies random weightages in a series of transformative operations and 
transfer function (i.e. tangent etc.) [46].  
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Transformed outputs from this analysis are then totaled to generate predictions 
(i.e. ANN-predicted values for specific heat, thermal conductivity and density at 
particular temperatures, i.e. 25, 100, 200 ... 800°C).  

The suitability of the ANN training is examined by two indicators (correlation 
coefficient (R) and mean absolute error (MAE)) (see Eqs. 1 and 2) [47]. It is due to this 
good agreement that it can be inferred that the developed AI model was able to capture 
the temperature-dependent behavior of common CTs.  

Correlation coefficient (R): 
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where Pi and Ai are predicted and actual values, respectively.  

Mean average error (MAE):  
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                    Eq. 2 

 

where E is the error between predicted and actual values for a particular 
temperature, n is the total number of observations. 

In general, the presented analysis shows that CTs have superior thermal 
properties that are similar to those found with concrete (from fire resistance point of 
view) and hence are favorable for use in construction as finishing or lining materials. 
Ceramic tiles also share main characteristics of other insulation materials such as spray-
applied fire resistive materials (SFRM) and since CTs do not decompose, or undergo 
significant degradation under fire conditions, like SFRMs, the use of CTs could be much 
more feasible and economical as these materials may not require being replaced post a 
fire incident. Figure 5 shows the ANN-predicted properties of CT. 
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(a) Density (R = 97.2%, MAE = 13.3 kg/m3) 

 

(a) (b) Thermal conductivity (R = 97.1%, MAE = 0.07 W/m.K) 

 
(b) Specific heat (R = 99.8%, MAE = 0.59 J/kg.k) 

Fig. 5 Comparison between predicted and measured thermal properties 
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CONCLUSIONS  

This paper presents a comparison between premature-dependent thermal material 
models for ceramic tiles as well as used ML to predict general thermal properties for CT 
under elevated temperatures. This derivation was carried out by applying a coupled 
sequence of Artificial Neural Networks (ANNs). Other conclusions from the results of 
this investigation are also listed herein: 

• Ceramic tiles are effective thermal insulating materials due to their inert nature.  

• There seems to be a lack of general guidance on conducting and developing 
material tests for building materials including ceramic tiles at elevated 
temperatures.  

• ML techniques can analyze and develop material models (such as ceramic tiles) 
and will be helpful in modernizing fire assessment of materials and structures. 
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