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abStract

The three point bending strength of glazed and unglazed tiles was measu-
red. The values of the Weibull parameters were estimated via Linear Regression 
(LR), Moment (M) and Maximum Likelihood (ML). The LR method showed the mini-
mum Kolmogorov distance, indicating that it was more precise for determining the 
Weibull parameters. Furthermore, while the characteristic strength and the mean 
strengths were increased by the glazing, the Weibull modulus was reduced. The 
strength distributions of the glazed and the unglazed tiles were completely diffe-
rent, i.e. they demonstrated a bimodal and a unimodal distribution, respectively. 
This behaviour was attributed to new flaws originating from the glazing.
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1. introduction

Ceramics have many excellent mechanical properties such as high hardness, 
stiffness, elastic modulus, and wear resistance; however, the large scattering in 
fracture strength is their major drawback which adversely affects their develop-
ment as a structural component. Indeed, the same ceramic specimens under the 
same loading conditions show different strength values. This wide scattering in 
ceramic strength values gives rise to low reliability and, when coupled with poor 
toughness, intensifies the probability of catastrophic failure [1-3]. The probabilistic 
nature of fracture in brittle ceramics is derived from the arbitrary distribution of 
critical microstructural flaws with a different size, shape, and orientation, which 
are inevitable even in high-tech processing [4]. 

For this reason, the mechanical performance of ceramic components should 
be determined statistically through an investigation of the flaw population; howe-
ver, the characterization of fracture origins and the determination of flaw popu-
lations require complicated and time-consuming fractography. Since the strength 
data distribution maps the flaw population, the evaluation is done based on frac-
ture strength variability [5]. The statistical investigation of fracture strength also 
provides a trade-off between high strength values and low variability because both 
are important issues in structural applications. 

The best-known probability function for characterizing strength distribution in 
brittle materials is the Weibull distribution, which is proposed based on the weakest 
link hypothesis [6]. Generally, the Weibull distribution function can be used for the 
investigation of many phenomena, where the probability of an event in a part of an 
object is equal to the probability of the event in the object as a whole, like a chain 
that breaks when one of its weakest links fails [7]. Weibull proposed the following 
equation:

where, Pf is the probability of failure, σ0 is the Weibull characteristic strength which 
is closely related to the average fracture strength, V is the region which is under 
tensile stress, and m is the Weibull modulus, which indicates the strength value 
scattering[8]. A lower m value leads to a wider dispersion of fracture strength, 
corresponding to less uniformity of flaws, while a higher m value indicates less 
variability in flaw size distribution and in fracture strength, so that a higher level 
of integrity is expected [9]. There are different methods of estimating the Weibull 
parameters including Linear Regression (LR), Moments and Maximum Likelihood 
(ML) which are discussed in [10, 11].

In this paper, we used the Weibull statistical function to analyze the fracture 
behaviours of two series of glazed and unglazed tiles.
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2. experimental procedure

The samples which were used in this experiment were randomly chosen from 
the products of Irana Tile Co. At least 30 identical samples were examined in each 
series. 

The unglazed samples, referenced C1 hereafter, were fired in a fast-firing 
roller kiln at 1100°C with a soaking of about 5 min. The glazed series, referenced 
C2 hereafter, were subjected to a second glaze firing. The maximum firing tempe-
rature and total firing time were 1030°C and 40 min, respectively. 

A 3-point bending test configuration was used to measure the flexural streng-
th of the C1 and C2 groups. The nominal dimension of the C1 and C2 series was 
40cm×25cm×7cm, using a span length of 38cm and crosshead speed of 0.5mm/
min. The flexural strength values obtained for C1 and C2 have been tabulated in 
ascending order in Table 1 and Table 2 respectively. 

Sample no. bending strength(kg/cm2)
1 131.64
2 136.90
3 139.61
4 140.02
5 143.16
6 144.92
7 145.82
8 147.14
9 150.23
10 152.84
11 154.26
12 155.11
13 155.93
14 156.89
15 156.89
16 157.76
17 158.00
18 158.70
19 158.74
20 159.17
21 159.49
22 161.30
23 163.00
24 163.14
25 163.52
26 163.55
27 163.66
28 164.95
29 166.43
30 166.55
31 167.04
32 167.67
33 168.04
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34 168.04
35 173.63

Table 1. The measured 3-point bending strength data for unglazed tiles (C1)

Sample no. bending strength (kg/cm2)
1 157.47
2 158.99
3 159.73
4 166.74
5 170.06
6 173.29
7 175.90
8 179.07
9 181.29
10 181.51
11 184.33
12 185.47
13 190.20
14 193.17
15 197.21
16 200.65
17 203.77
18 203.99
19 205.84
20 206.40
21 208.05
22 208.82
23 210.44
24 211.64
25 211.82
26 212.23
27 213.98
28 214.64
29 214.74
30 214.82
31 215.55
32 216.33
33 217.16
34 218.31
35 218.52
36 222.09

Table 2. The measured bending strength data for glazed tiles (C2)
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3. reSultS and diScuSSion

In this study, three types of estimators including Linear Regression (LR), Mo-
ment (M) and Maximum Likelihood (ML) were used to estimate the Weibull para-
meters including the Weibull modulus or shape parameter and scale parameter for 
both groups. The complete explanation of these methods can be found in [10, 11]. 
Different expressions were applied to define the probability estimator in the LR 
method. Since it has been shown that    leads to the least biased estimate 
of the Weibull modulus, it has been used in this article [12, 13]. Table 3 shows the 
Weibull parameters of C1 and C2 estimated via three different estimators.

reference lr m ml

σ0 m σ0 M σ0 m

C1 160.10 18.71 159.70 19.15 159.00 20.07

C2 220.75 11.75 218.56 12.22 214.03 13.57

Table 3. The Weibull parameters of C1 and C2 estimated via three methods of LR, M, and ML.

Table 3 reveals that different estimation methods produced different values 
for the Weibull parameters. The empirical cumulative distribution (failure function) 
and the fitted failure functions for different estimators and samples are shown in 
Fig. 1 and Fig. 2.

Figure 1. Comparison of the cumulative distribution function of three estimators
and empirical results for C1
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Figure 2. Comparison of the cumulative distribution function of three estimators
and empirical results for C2

There are several criteria which are used to determine the compatibility of 
the fitted distribution function to the empirical data. The Kolmogorov–Smirnov 
test (K-S test) is one of the most useful and popular methods, and it indicates the 
fitness of the estimator and data[14]. The K-S distances for the three estimation 
methods and the samples are indicated in Table 4. 

reference linear regression moment maximum likeli-
hood

C1 0.0841 0.0845 0.0906

C2 0.1468 0.1535 0.1586

Table 4. The values of the Kolmogorov-Smirnov test for different estimation methods.

Table 4 clearly shows that for both samples, the LR method gives the mini-
mum Kolmogorov–Smirnov distance, establishing that more accuracy can be ob-
tained by using this than by using the M and ML estimators. 

Based on Tables 3 and 5, it can be observed that both the Weibull characteris-
tic strength and the mean strengths of C2 are higher than C1. The glaze layer can 
cover the surface cracks of the substrate, keeping them from the external stresses 
and thereby improving the characteristic and mean strengths, considerably. Table 
3 also presents a higher Weibull modulus (m) for C1 compared to C2, in the three 
different methods, which means that the C2 series suffers from a more scattered 
flaw size. In addition, according to Table 5, it was observed that the variance has a 
higher value for C2, which confirms a wider dispersion in fracture strength values 
of the glazed specimens.
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reference mean strength variance

C1 156.68 102.59

C2 197.34 385.39

Table 5. Mean strength and variance values for C1 and C2

Fig. 3 depicts the Weibull plot of the strength values for both samples. In a 
Weibull plot, typically, ln(ln(1/(1-Pf))) are depicted versus ln(σ). As shown in Fig. 3, 
the strength values of C1 are appropriately fitted to a straight line; however, the 
data for C2 do not suitably fit to the straight line and are therefore deviated from 
the Weibull distribution. The results reveal that a more complex model, i.e. a bi- or 
multi-modal Weibull distribution is needed to describe the C2 data values, due to 
the severe deviation of C2 data from the Weibull unimodal distribution. As shown 
in Table 4, the R2 values for C1 are higher than C2, 0.98 and 0.93 respectively, and 
conversely, the K-S values for C1 are lower than those of C2. These values verify 
the deficiency of the unimodal model to describe the distribution of the fracture 
strength of glazed specimens.

Figure 3. Weibull plot for C1 and C2

Consequently, the bimodal distribution of Weibull was used for further investi-
gation. For this purpose, the strength measurements for C2 were divided into two 
categories, C2-1 and C2-2. The fracture strength data were classified based on the 
highest values for R2 of the C2-1 and C2-2 fit lines. Fig. 4 illustrates the unimodal 
and bimodal strength distribution for C1 and C2, respectively. 
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Figure 4. Weibull plots for the C2 subgroups

The better fitness of the bimodal distribution compared to the unimodal dis-
tribution of C2 is characterized by the variation in R2, variance, and K-S values. As 
reported in Table 6, the R2 values in C2-1 and C2-2 are higher than in C2, showing 
that the bimodal distribution more appropriately matches the strength data. Fur-
thermore, a significant decrease in variance and K-S values justifies the use of the 
more complex model for C2.

reference Sample size r2 variance K-S

C2-1 19 0.98 246.31 0.1249

C2-2 17 0.95 16.849 0.0919

Table 6. The R2, Variance and K-S values for C2-1 and C2-2.

It should also be noted that fitting the multimodal distribution does not sig-
nificantly change the R2 and K-S values and only complicates the model, so that it 
is not preferred. 

As mentioned previously, based on the weakest link theory, the most serious 
flaw in the material determines the strength of material; consequently, the streng-
th distribution reflects the flaw distribution. In this case, the flaw distribution in 
glazed and unglazed tiles is completely different. The strength values of unglazed 
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sample are appropriately aligned along a straight line, and it is well-matched with 
the Weibull distribution. As a result, fracture in this group develops from a single 
flaw population. However, the strength data of the glazed sample follow a bimodal 
distribution and, therefore, fracture originates from two or more active concurrent 
flaw distributions. Table 7 shows the characteristic strength and Weibull modulus 
for the C2 subgroups. 

reference σ0 m

C2-1 278.62 6.61

C2-2 205.01 23.20

Table 7. Characteristic strength and Weibull modulus for C2-1 and C2-2

In the glazed tile the flaws can originate from the substrate and the glaze 
layer. In other words, the non-uniformity of the glazed layer results in inhomo-
geneous flaw origins. Because the strength distribution is strongly related to flaw 
distribution [5], we observe a bimodal fracture strength distribution. Consequently 
we can conclude that glazing introduces new flaw origins and changes the flaw 
distribution as well as the fracture strength distribution.

Further investigation such as fractographic examination is recommended for 
confirmation of multiple flaw distributions and determining the flaw origins.

4. concluSionS

In the present study, we use the Weibull statistical distribution model to in-
vestigate the fracture strength of glazed and unglazed specimens. Three diffe-
rent methods of Linear Regression (LR), Moments and Maximum Likelihood (ML) 
were used to estimate the Weibull modulus and characteristic strength. The result 
showed that while the characteristic and the mean strengths of samples increase 
with glazing, the Weibull modulus decreases conversely. The strength distribution 
of the unglazed specimens was unimodal; however, the glazed specimens followed 
a bimodal distribution. Since flaw distribution and fracture strength distribution are 
strongly related, we have concluded that glazing produces new flaw origins.
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