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ABSTRACT

The rapid cooling of ceramic tiles in an industrial kiln produces temperature gradients 
inside the tiles. These gradients are known to cause residual stresses, following a process very 
similar to that of glass tempering. 

In this study a method has been fine-tuned that allows the residual stresses to be measured 
in white wall tile bodies. The method has been used in pieces cooled rapidly under laboratory 
conditions, and the presence of residual stresses was verified. 

In order to explain the residual stresses obtained under laboratory conditions, a thermo-
mechanical model was developed that consisted of two parts: in the first (thermal) part, the 
temperature profiles inside the piece were calculated; in the second (mechanical) part, the 
dimensional stresses and the changes were obtained based on linear viscoelastic constitutive 
relations. The model was solved by a numerical method. The residual stress measurements 
made under laboratory conditions and the developed model allowed the parameters of the 
constitutive relations (variation of effective viscosity with temperature) to be determined.

Finally, tile surface temperature was measured during cooling in an industrial kiln, 
with the help of a temperature probe. This temperature value and the results obtained in the 
laboratory were used to estimate the evolution of curvature and stresses during and at the end 
of the cooling. The experimental measurement of the residual stresses led to a value very close 
to the one estimated with the model, confirming the model’s applicability.
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1. INTRODUCTION 

Cooling in industrial kilns takes place in three clearly differentiated steps: 
initial, indirect, and final cooling. The three take place at the highest possible 
speed compatible with the physical integrity of the tile; however, the high cooling 
rate causes a series of stresses to appear in the tile during cooling. If these stresses 
reach a critical value, tile failure will occur, leading to a defect known as dunting. 
Stresses below the critical value, though they may not lead to rupture, can generate 
microcracks that reduce mechanical strength significantly. Part of these stresses 
may remain inside the tiles after the firing. These stresses are called residual 
stresses.

Residual stresses can give rise to several problems:

1. If they relax, they lead to variations in curvature after firing. This is the 
phenomenon known as delayed curvature. 

2.  During cutting processes in tile installation, the tiles may break or be cut 
along non-desired paths. 

3.  During rectification the stressed areas are eliminated, as a result of which the 
rectification process is associated with a change in curvature.

There are basically two types of residual stresses in ceramic tiles: those 
originating from the fit between the glaze and the body[1] and those produced by 
the temperature gradients during cooling[2,3]. The latter have received much less 
attention than the former, partly because they are harder to study, and partly 
because they only begin to play a noteworthy role when factors appear such as the 
use of short industrial cycles, the manufacture of large-sized tiles, or tile polishing 
and rectification.

2. THEORETICAL MODEL

The calculation of the stresses that develop during cooling comprises a 
series of steps (figure 1). The first part of the calculation consists of solving the 
thermal problem. The starting point is knowing the geometry (thickness), thermal 
properties (thermal conductivity and specific heat), and density of the tile. With 
these properties, and knowledge of the tile surface temperature (or when this is 
unavailable, kiln temperature) and the heat transfer coefficients, and using the 
equations of heat transfer, it is possible to ascertain the temperature distribution 
inside the tile.

The second part of the calculation involves solving a mechanical problem. 
The temperature profile obtained previously and the constitutive relations, which 
establish the relation between stress and strain, serve as the starting point. The 
foregoing data, together with the equations of mechanical equilibrium, allow 
calculation of the displacements, i.e. the movements that the tile is going to 
undergo. Finally, the stresses that develop throughout the cooling are obtained.
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Figure 1. Steps for the calculation of residual stresses.

2.1. THERMAL CALCULATION

The equation of heat transmission in a non-steady state inside the tile adopts the 
form[4]:

Eq. 1

where:

T: temperature at a point in the tile at a given moment (ºC)

t: time (s)

ρ: density (kg/m3)

cp: specific heat (J/(kgK))

k: thermal conductivity (W/(mK))

GE: heat generation (W/m3)

The term heat generation corresponds to the heat absorbed or released by chemical 
reactions. During cooling all the important reactions from an energy viewpoint have 
already been completed; therefore, this term may be considered zero. 

In order to solve the foregoing equation it is necessary to know the tile surface 
temperature, or the temperature in the kiln, and the heat transfer coefficients. Due to 
the difficulties of obtaining accurate values for these coefficients, it was decided to 
measure the tile surface temperature.
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2.2. MECHANICAL CALCULATION

The constitutive relations establish the relation between the stress and the strain 
that a body undergoes. The simplest is Hooke’s equation (linear elasticity); however, 
a law of this type is unable to explain the generation of residual stresses. One of the 
simplest constitutive relations that are able to explain the residual stresses are the 
linear viscoelastic constitutive relations, which may be written as:

Eq. 2

where:

εe,x: elastic strain along the x-axis

σx: normal stress on a plane perpendicular to the x-axis (Pa)

E: modulus of elasticity (Pa)

η: viscosity (Pa·s)

η0: pre-exponential factor (Pa·s)

Θ: constant (K)

With a view to simplifying the model, it was assumed that the modulus of 
elasticity was independent of temperature. This is simply an approximation, since it is 
known that there is a dependence of E on temperature; however, temperature may be 
expected to have a much smaller influence on E than on viscosity.

Finally, the equation of mechanical equilibrium may be written as[5]:

Eq. 3

where σij is the stress tensor and fi the force per unit volume.

The finite element method was used to solve the previous equations, the tile 
being modelled as a bar (figure 2) divided into a series of cells (elements) with two 
nodes per element. Each node can move along the horizontal axis (U), vertical axis (W), 
or rotate (Θ). This reduces the problem to calculating the values of U, W, and Θ in each 
node, along time.

Figure 2. Finite element model used.
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3. GENERATION OF STRESSES UNDER LABORATORY CONDITIONS

3.1. DESCRIPTION OF THE ASSEMBLY

With a view to analysing the stresses that develop during cooling, 150x20 mm 
test pieces were pressed from a spray-dried powder. These test compacts were fired 
in an electric laboratory kiln at a temperature of 1130 ºC and then rapidly cooled to 
ambient temperature (figure 3).

The cooling rate was regulated by modifying the distance between the test piece 
and refractory plates; the surface temperature of the test piece was measured with a 
K-type thermocouple connected to a data logging system.

The evolution of the temperature recorded as a function of time (series T measured/
rapid cooling and T measured/slow cooling) is shown in figure 4. The thermocouple was 
initially cold and took a certain time to reach the test piece temperature. In order 
to calculate the real temperature of the test piece it was assumed that, initially, its 
temperature matched that of the kiln, and that the thermocouple behaved as a dynamic 
element that could be characterised by means of a first-order transfer function. These 
assumptions yielded the corrected curves shown in figure 4

Figure 3. Assembly used to perform the rapid cooling.

3.2. MEASUREMENT OF THE RESIDUAL STRESSES

3.2.1. Description of the measurement method

The layer removal method was used to measure the residual stresses. The method 
consists of progressively reducing the thickness of the test piece by a mechanical 
method, and analysing the resulting dimensional change. The foundation of this 
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method, as well as the measured parameters: cumulative thickness of the removed 
layers (hci) and curvature (κi), is shown in figure 5. The more stressed is the test piece, 
the greater will be the change in curvature that develops during machining.

Curvature can be calculated from the centre deflection (δc) from:

where L is the length of the test piece.

Figure 4. Evolution of test piece surface temperature with time

Figure 5. Foundation of the layer removal method. Measured parameters

In order to establish the relation between hc and κ, and to evaluate the residual 
stresses, it is useful to use the free strain (εf) concept, which is the strain that a point in 
the piece would have if it were not subjected to any type of stresses (under conditions 
of very slow heating or cooling). Free strain, like the residual stresses, may vary 
throughout the thickness; i.e. it is a function of the position variable z, where z=0 
corresponds to the bottom surface and z=h0 to the top surface.

Instead of z it is more practical to define the dimensionless variable ζ as:

where h0 is the initial thickness of the test piece. The free strain may be written 
as a function of ζ: εf(ζ). In principle, the value of εf(ζ) is unknown. It is quite usual to 
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decompose εf(ζ) as a linear combination of certain basis functions φk(ζ) defined in the 
range [-1,1]. In the calculations performed, Legendre polynomials Pk(ζ) were used as 
basis functions:

Eq. 4

Where the Legendre polynomials are defined by the Rodrigues equation[6]:

Eq. 5

The first five Legendre polynomials are shown in figure 6.

Figure 6. Graphic representation of the first five Legendre polynomials.

The advantage of using these polynomials is that the terms k=0 and k=1 lead to 
dimensional changes in the piece, but not to residual stresses. It was further verified 
experimentally that the terms corresponding to k≥3 played no significant role. Under 
these conditions, eq. 4 becomes:

Eq. 6

The foregoing equation and the elasticity equations allow the relation to be 
calculated between the cumulative thickness of the removed layers, hc, and the 
variation in curvature that the piece undergoes.

Eq. 7
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where �κ' is the variation of the dimensionless curvature and hc’ is the 
dimensionless thickness of the removed layers. Finally, the stress profile is given by 
the expression:

Eq. 8

where σr(ζ) is the residual stress and E the modulus of elasticity. According to eq. 
8, under the conditions indicated previously, the stress profile is parabolic. The highest 
stress values are found at the surface, where ζ=±1, P2(±1)=1, the value of these stresses 
being σres=-Eλ2. Therefore, λ2 is a direct measure of the value of the residual stresses.

3.2.2. Results of the residual stress measurement 

The evolution of curvature as a function of the removed dimensionless thickness 
is plotted in figure 7. It shows that the points obtained fit a straight line, as predicted 
by eq. 7. In addition, as the cooling becomes faster, the slope becomes steeper.

The foregoing data allowed figure 8 to be obtained, in which the stress profile 
throughout the thickness of the piece has been plotted. It shows that a negative stress 
(compression) develops near the surface and a positive stress (tension) near the centre. 
This corresponds to the typical stress profile obtained during tempering of a material 
like glass.

Figure 7. Variation of curvature as a function of cumulative removed layer thickness.

3.3. APPLICATION OF THE MODEL TO THE LABORATORY TESTS

The surface temperature curves of the piece (figure 4) and the values of the 
thermal properties were used to determine the temperature profile inside the piece.

In order to solve the mechanical problem it was necessary to determine the 
parameters of eq. 2. The modulus of elasticity was measured using the three-point 
bending test. The determination of parameters η0 and Θ was more complex, so that 
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it was decided to leave them as fitting parameters, determining their value from the 
experimental results of the residual stresses (figure 8).

Figure 8. Stress profile inside the test piece, for the two analysed cooling rates.

The results of the application of the model are given in figure 9 for slow cooling 
and in figure 10 for fast cooling. The evolution of temperature during cooling and the 
stress inside the pieces have been plotted in both graphs. 

The stress inside the piece varies throughout the direction of the thickness, as 
indicated previously. This profile can also be expressed as a linear combination of 
Legendre polynomials, in an analogous form to eq. 4, yielding:

Eq. 9 

If the temperature in the piece is uniform, the parameters λ'k of the previous 
equation coincide with λk of eq. 4. One of the uses of eq. 9 is that it allows the stress 
profile σr(ζ,t) to be expressed, which depends on the coordinate of thickness and 
time, as a set of functions λ'k(t) that only depend on time, not on ζ. Instead of using 
λ'kE it is possible to work with the product λ'kE, which has stress dimensions and is 
therefore more directly related to the stress profile.

It may be observed in figure 9 that λ'2E (Pol-2 series) is the most important 
component of the stress profile. A maximum appears at the beginning, owing to the 
initial rapid cooling. At about 5 minutes there is a second maximum, even though 
the cooling rate continues to decrease. This second maximum occurs at about 573 
ºC, and is due to the allotropic transformation of quartz. Once the transition region 
has been crossed, the value of λ'2E decreases; however, at the end of the cooling, it 
is not zero. The remaining value is the residual stress.

The term λ'3E is constant and equal to zero, because the cooling is symmetrical 
and, hence, so is the stress profile. In fact, all λ'kE terms with an odd k must be 
zero.
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Figure 9. Evolution of the coefficients of the Legendre polynomials P2, P3, and P4. Slow cooling.

Finally, the term λ'4E (and those of higher order) are smaller, and have a certain 
importance solely near the quartz transition area. Once the cooling has ended, only λ'2E 
t persists, which explains why the experimentally measured profile is parabolic. 

When the cooling is performed at a faster rate, similar curves are obtained (figure 
10), but the value of all stresses is quantitatively greater. In particular, it is observed 
that the stress during the quartz transition is very high. If this stress exceeds the 
mechanical strength, dunting (rupture of the piece) can occur.

It is also noted that, when the cooling rate increases, the final residual stress 
profile continues to be parabolic, though with a greater stress value. 

Figure 10. Evolution of the coefficients of the Legendre polynomials P2, P3, and P4. Rapid cooling.

The foregoing calculations allowed estimation of the parameters of the constitutive 
relations (eq. 2), which yielded:

η0 = 1.96·1011 Pa·s
Θ = 2200 K
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4. INDUSTRIAL APPLICATION

4.1. THERMAL CALCULATION

In order to calculate the stresses and the evolution of curvature in the tiles 
under industrial conditions, the procedure indicated in figure 1 was followed. A 
kiln was selected in which white-body wall tiles, size 600x300 mm, were being 
processed.

The first step was to measure the temperature at the top and bottom tile 
surfaces[7], for which a Datapaq temperature probe was used. The evolution of tile 
surface temperature, as well as that of the thermocouples in the kiln, is plotted in 
figure 11.

It is observed that there may be significant differences between the temperatures 
recorded by the kiln thermocouples and the temperatures at the tile surface.

Figure 11. Kiln gas temperature (Tg: circles and triangles) and tile surface temperature (Ts: solid lines)

4.2. EVOLUTION OF TILE CURVATURE 

The temperature at the top and bottom tile surfaces, as well as tile curvature, 
is plotted in figure 12. At the beginning, during the initial rapid cooling, the 
tile exhibits a negative deflection (concave curvature), because the top surface 
temperature is lower, which causes this surface to shrink more. 

Another maximum appears in the quartz firing range. In this case, the 
curvature exceeds -4.5 mm, and is caused by the high coefficient of thermal 
expansion in this stretch. 

In the final cooling, the temperature difference is significant, and produces a 
new curvature maximum. At the kiln exit the tile is once again flat. 
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Figure 12. Calculation of the evolution of the curvature deflection of a tile body during industrial cooling.

The evolution of curvature during cooling is, therefore, very complex. It may be 
noted, furthermore, that in the calculations performed the glaze/body fit has not been 
taken into account, nor has the existence of possible predeformations generated during 
heating.

4.3. CALCULATION OF RESIDUAL STRESSES

The stress distribution inside the tile and throughout the kiln has been plotted in 
figure 13. The t-axis represents the time that elapses after the tile has left the firing area, 
and ζ is the dimensionless position inside the tile. The values of ζ in the foreground 
plane correspond to the stresses at the bottom surface, while those in the background 
plane correspond to the stresses at the top surface.

There are three periods in tile cooling in which stresses are large: cooling start, 
the quartz transition area, and the beginning of the final cooling. These areas match 
those in which significant curvature changes occur.

Figure 13. Calculation of the evolution of the curvature deflection in the tile body during industrial cooling.
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As soon as the tile leaves the peak temperature area, tensile stresses appear 
at the surfaces and compression stresses in the centre. These stresses decrease and 
even reverse after 10 minutes. Entry into the quartz transition area causes important 
stresses to appear again, which continue to be tensile stresses at the surface and 
compression stresses in the centre. In addition, the stress in the tile top surface is 
higher because the cooling is abrupter through this surface. It is interesting to note 
that the maximum stress peak is located exactly in the indirect cooling zone, which 
means that the curve design is appropriate. It also indicates that the extent of the 
indirect cooling zone is excessively large; possibly owing to the oversizing factor 
used by the kiln manufacturer.

In the final indirect cooling zone the β-quartz  α-quartz transition has 
already occurred, and the stresses reverse again. 

When the final cooling is reached, the surfaces are again subject to tension 
so that they shrink. This stress decreases progressively as the thermal difference 
between the surface and the centre decreases. When the tile leaves the kiln it 
exhibits residual stresses that are compression stresses at the surface and tensile 
stresses in the centre.

Figure 14. Evolution of the coefficients of the Legendre polynomials P2, P3, and P4. Industrial cooling.

The evolution of the coefficients of the Legendre polynomials λ2, λ3, and λ4 is 
shown in figure 14. The main difference between figure 14 and the one obtained 
in the laboratory is its greater complexity. λ3 becomes important, especially in 
the quartz transition area. This is a very clear indication that the cooling is not 
uniform (cooling is greater through the top than through the bottom). Despite the 
complexity of stress evolution during cooling, the tile displays a relatively simple 
profile at the kiln exit: only λ'2 differs from zero.

The stress profile inside the piece, calculated theoretically with the developed 
model, is shown in a solid line in figure 15. The points correspond to the profile 
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determined experimentally in a tile fired under industrial conditions. Good 
agreement is observed, which validates the model for the estimation of the stresses 
generated under industrial conditions.

Figure 15. Comparison of the theoretical residual stress profile and the one calculated 
experimentally from the developed model.

5. CONCLUSIONS

- A procedure has been developed that allows the residual stresses inside 
ceramic tiles to be measured. 

-  During the industrial cooling of porous wall tiles, residual stresses 
develop as a result of thermal gradients in the tiles. This phenomenon can 
be reproduced on a laboratory scale, withdrawing the tile from the kiln at 
peak temperature to force rapid cooling. 

-  The residual stress profile, in both industrial tiles and test pieces in the 
laboratory, is basically parabolic, with tensile stress at the surface and 
compression stress in the middle.

-  A model has been developed that allows the residual stresses and the 
evolution of tile curvature during cooling in the kiln to be calculated. 
The model is based on data obtained in laboratory tests and on the 
measurement of tile surface temperature under industrial conditions. 

-  The measurement of the residual stresses of industrially fired tiles matches 
the theoretically calculated values. 

-  The developed model predicts that the tile will have a concave curvature 
during most of the cooling. This curvature displays three maximum 
values, which coincide with cooling start, the quartz transition area, and 
the beginning of final cooling.
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