COMPARATIVE STUDY OF TECHNICAL STANDARDS APPLIED TO CERAMIC TILES

José O. A. Paschoal, Thiago A. Deyuri, Eduardo Quinteiro, Marcelo D. Caridade, Paulo R. Santana, Tercílio A. C. Junior

Centro de Inovação Tecnológica em Cerâmica – CITEC/CCB Rua Nossa Senhora do Carmo, 96 – CEP: 13510-000 – Santa Gertrudes/SP – Brazil citec_ccb@terra.com.br http://www.ccb.org.br

1. INTRODUCTION

Economic globalization has led to dissemination of products, information and commercial relations on a world-wide scale, shortening distances and opening up new horizons. This phenomenon has also occurred in the ceramic tile sector. In 2002, over 1000 million m² tile was marketed between countries, and different trade fairs fostered the integration of companies on the five continents. Uniformity and standardisation of ceramic floor and wall tile technical parameters are important. These parameters include properties, nomenclature, tile installation techniques and product specification, in order to facilitate trade and avoid the creation of technical obstacles between countries.

This study proposes to identify, compare and analyze the main technical standards relating to ceramic tiles in different countries. The study deals with an evaluation of the interpretation of each methodology described in the EN (European), ASTM (US) and ISO, standards. The tests performed at the Centro Cerâmico do Brasil-CCB, (amounting to approximately 10 thousand tests/year using the ISO 10545 Standard) have shown differences in the results and interpretations when these tests are conducted at different laboratories.

2. COMPARATIVE ANALYSIS OF THE STANDARDS

Ceramic tile standards evaluate the properties of the glazed or unglazed surface, and of the body. The comparison between the main standards has considered the test method (equipment, products, classifications) and the specifications. The tests refer to pressed and glazed ceramic tiles, as they are the main product types made in Brazil.

The tests for water absorption, linear thermal expansion, dimensional moisture expansion, Mohs scratch hardness, bending strength and breaking load, frost resistance, characteristics and surface appearance display no significant differences in test method and specifications.

The tests for crazing resistance, abrasion resistance, stain resistance, and resistance to acids and bases display differences in the procedures. (Table 1)

3. FINAL CONSIDERATIONS

The difference between the procedures of some tests of the analyzed standards is shown and the results for the same product properties may therefore vary. The standardization and harmonization approach of the standards needs to be accompanied by a revision of test classification criteria, since service conditions, environments, cleaning products, etc., undergo constant changes.

Product certification organizations like Centro Cerâmico do Brazil, AENOR in Spain and Centre Scientifique et Technique du Bâtiment (CSTB) in France can contribute to improving the correlation between the results determined by the tests and the product application context, through specifications systems. The already existing systems are set out in ISO 10545, but differences persist in the criteria: CCB adopts ISO 10545 whereas CSTB has created the UPEC system.

TEST	ISO		ASTM		EN		
Crazing resistance	Time 2 h at 5 atm		Time 1 h		Time 1 h at 5 atm		
	PEI METHOD		PEI METHOD		WET $(PEI) = SAME$		
	Abrasive Charge:		Abrasive Charge:		Dry (Centro Ceramico of Italy)		
	70 g of 5 mm steel balls		70 g bolas of 5 mm steel balls		Abrasive Charge: Porcelain Jar and		
	52.5 g of 3mm steel balls		52.5 g of 3mm steel balls		Silicon Carbide		
Abrasion	43.75g of 2mm stee	43.75g of 2mm steel balls		43.75g of 2mm steel balls			
resistance (glazed)	8.75g of 1mm steel balls		8.75g of 1mm steel balls				
(glazeu)	3.0g fused aluminium oxide		3.0g fused aluminium oxide				
	of grain size 80		of grain size 80				
	Classification (revol	Classification (revolutions) Classification (revolutions)		olutions)	Classification:		
	0 - 100	I – 150	0 - 100	I – 150	1 – 500 rev	2 – 1000 rev	
	II – 600 III –	750 o 1500	II – 600 III	– 750 o 1500	3 – 1500 rev	4 – 5000 rev	
	IV – 2100 or 6000	V - 12000	IV – 2100 or 6000	V - 12000	By agreement: Ma	ass Loss	
Stain Resistance	Staining agent: chromium oxide,		Staining agent: methylene blue		Staining agent: methylene blue		
	iron oxide and oil		and potassium permanganate		and potassium permanganate		
	Time: 24 h		Time: 24 h		Time: 24 h		
	Classification: 1 to 5		Clasificación: 1 a 5		Classification: 1 to 3		
	Staining agent: hot water, product		Staining agent: hot water,		Staining agent: hot water,		
	of pH 7, abrasive, hydrochloric		cleaning product: ammonium		cleaning product: ammonium		
	acid		chloride and solution		chloride and solution		
Resistance to acids and bases	Solution	Time (h)	Solution	Time (h)	Solution	Time (h)	
	Hydrochloric acid	96	Hydrochloric acid	24	Hydrochloric acid	168	
	Citric acid	24	Citric acid		Citric acid	6	
	Potassium hydr.	96	Potassium hydr.	24	Potassium hydr.	128	
	Sodium hypochlorite	24	Sodium hypochlorite		Sodium hypochlorite	6	
	Ammonium chloride	24	Copper sulphate		Copper sulphate	6	
			Ammonium chloride		Ammonium chloride	6	
	Classification: A, B and C		Classification: affected or non-affected		Classification: AA, A, B, C, D		
Resistance to thermal shock	Temperature range 15 to 105°C		Temperature range : 24 to 145°C		Temperature range : 15 to 105°C		
	Number of cycles: 10		Number of cycles: 5		Number of cycles: 10		
	Type of test:						
	Immersion: Samples		Type of test:		Type of test:		
	W. Water < 10%		Immersion		Immersion: Samples W. Water < 10%		
	Without immersion:				Without immersion:		
	Samples with W. Water > 10%				Samples with W. Water > 10%		
Dimensional	Thickness: draw diagonals and		Thickness. measure in each corner. The		Thickness: draw diagonals and		
characteristics	measure maximum thickness in		measuring point shall be between 6.4				
	each of the four sections		to 19 mm from the edge		each of the four sections		

Table 1. Comparison of Ceramic Tile Standard Test Methods.

4. ACKNOWLEDGEMENT

The authors thank FAPESP, CNPq and FINEP for the resources and support for the performance of this study.

REFERENCES

- [1] International Standard Organization (ISO) 10545 Part 1 a 14
- [2] ASTM American Society for Testing and Materials: C 1027, C 650, C 1378, ANSI A 137, C 1028, C 370, C 373, C 1026, ANSI A137, C1485/499/502, C 484
- [3] EN EUROPEAN NORM: 98, 99, 101, 102, 103, 106, 154, 155, 202