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1. INTRODUCTION

In recent yea rs compu ter ass isted design has been widely used in branches of
ind ustry suc h as cera mics, textiles, footwear, etc.

Speci fically in the ceramic industry, the prod uction of floor and wa ll tile designs
resembling natural textures like granite, marb le, wood, etc. as closely as possib le, would
appea r to be a subjec t of cons iderable interest.

It would be very usefu l to have a user-friendly tool th at allowed the p ro fession al
design er to generate di fferent con figurations of the sa me tile, w hile kee p ing the sa me
visual appearance (i.e. having a co mmo n cha rac teristic that would permit d ifferentia ting
all the realisat ion s be long ing to the sa me textu re). Howeve r, on observing these in detail,
they wou ld be as d ifferent as two pieces of the same rock.

This led to se tting two closely rela ted objectives:

• In the first place, designing differen t textures by specifying just a few parameters.

• Seco nd ly, obta ining d ifferen t realisat ions of the sa me tex tu re, in order to
ap proach nat ure' s random behaviour.

2. GENERA L D ESCRIPT IO N O F T HE M ETHOD

The mathe matical meth ods chosen for ge nera ting the ce ra m ic textures a re ca lled
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Markov Random Fields (MRF)Ii I. These tech n iques we re se lec ted as a res u lt of the very
na tu re of th e p roblem itself. Mult ipl e ra ndom realisation s are so ugh t o f the same
des ign, and MRF are p recisel y based on the consideration tha t m ulti ple va ria bles
behave in a ra ndom fashion while following a probability di st ribution. In our case,
th e random variables are the p ixel s in the im age, which can take on differen t levels of
grey.

The present paper is structured as follows; Section 2 provides a deta iled exp lanation
of Ma rkov rand om fields and describes two of the ene rgy functions used for our
pu rposes. Section 3 gives an overview of the appl ied simulation methods an d concludes
with a presentation of some of the most sig nifica nt resu lts obtained with the method .

3. MARKOV RANDOM FIELDS

A Mar kov random field wi ll be a p rob ability d istribution on the set of all possible
images that sa tisfy certain properties. The distribu tion will have a characteristic shape, so
that certa in configurations are more likely to be found than others.

In the images that follow a MRF there is a certa in relation between the colour of
neighbouring point s. Th is relation can be expressed mat hematically as a potential
difference between these points.

An image can be interpreted as a function in p lane XY, which assumes discrete
val ues between [0,255]121. Thus a representation of the image would be the function shown
in Fig. 1.

Fig 1. Reprewntnticn ofall image as a 3 dimensional surface. (a) Starting image. (b) Modelled image.

Let us assu me a starting image as shown in Fig. 1, in which how ever the function
only ass umes valu es at certain points of plane XY (d iscrete func tion), given by a grid of
position s s=(x, y). which we will call pixels. A level of grey (or colour) is associated with
each pixel in the range [0,255]. This defines a surface and each configuration will have a
different surface. Let us now imagine that the surface can be modelled at will, by
introducing for th is purpose certain forces in each position (local forces ), which will make
the surface smoo the r or roughe r depending on the type of force defined in each position .

(I). RAM" CHt:LLAPA AJ\:O PAUL j AII\ . Markov Random Fields, Throry and Applicatione. Ac ade mic Pres s. Inc. 1 ~ 1 .

12). RA FAEL C. Go\lZALEZ "I'\;D PAUL W 'f\T Z- Digital Imag~ Processing. Addison-wesley Publishing Com pany. 1987.
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The objective is to defi ne certain local forces and allow the image to evolve, obtaining an
end image that will be the targeted textu re in whi ch the colour of a position s~(x, y) only
depends on its neighbours.
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Fig. 2. Representation of the imageplane and neighbourhood u5t'd.

Havin g se t out th is idea in an in tu it ive for m, we can now go on to formalise it.
Let an ene rgy function g ive n by E(x) represent th e forces on th e d ifferen t pi xels in
th e previously described im age. This ene rgy defines a probabili ty di stribut ion given
by:

I
P(x) =-exp( -E( x ))

Z

where P(x) is the probabilit y that a given realisation x is obtained of the image, and
Z=Lexp (-E(x) ) is a stand a rd isation cons tant whose val ue is obtai ned by calc ulating
th e sum mation of the p rob abilit ies on the se t of all th e possible images. Th is
di str ibution is ca lled th e Gibbs Field!", Th e meaning of th e foregoing eq u a tio n is tha t
th e mo st probable images in th is di st ribution are precisely those w ith the least
energy.

For the above d istribu tion to be a Ma rko v distribution, the following two
requirem ents need to be satisfied for energy:

• That a neighbourhood relation 0(5) be defined on the pixels in the ima ge.

• Tha t function E(x) be locally defined , accord ing to defin ed neighbourhood 0(5),
as a summa tion of local poten tials V(xs) tha t wi ll depend for each given pixel s
on the neighbou ring pixels.

Another feature that has not yet been mentioned, but which appears very
interesting from a textu re de sign point of view, is that of achieving continuity at the image
boundaries, that is, when the same image is set various times, the texture is not broken at
the edges. This has been done by definin g the neighbourhood o(s) at the image
bou ndaries in a special way. See fig. 3.

(3). Anand Rangarajan and Rama Chellapa. Markov Random Field Mode ls in image proces sing . Tilt' ha"dbook of Brain Theorv and
Neural Netuxnks, (pp. 564-567),1995 .
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Fig. 3. Botmdary definition of /ft·;glrbollrlwod.
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The work to be done will involve defining the energy function (equivalent to the
forces acting locally ) and proposing algorithms that allow any image (that will act as a
seed ) to evolve, in order to obtain other, different, most probable configurations,
according to a locally specified probability distribution.

Fig. 3 shows a genera l schematic of the whole sys tem used , in whi ch the part
cor respo nd ing to the definit ion of local Ene rgy remai ns to be explained . This is set ou t
below in Section 3, followed by the simulation algorithms.
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fig. -I. Schematic <if 11ft' sy~tt:m INrd in .'l:l'/ltTal;'rx random textures .

3.1. TEXTURE MODELS

We ha ve already stated that defining a random Mark ov field only involves inputting
an energy function expressed in a potential summation on ima ge neighbourhoods.

At this point we will describe some Energy fun ction s used for texture syn thes is by
Markov Random Fields.
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The models provided depend on a set of parameters 0i such that different types of
texture can be obtained, depending on the value of these param eters.

3.1.1. MODEL 1>

Now we will look at an exa mple of Energy that meets all the necessary requ irem ents
for the resulting d istribution to be a Markov d istribution.

Let the ene rgy function be given by'",

4

E(x) = ~ ~ e,~x., - x, )
I <J, I>,

The symbol <s,t>i indicates that positions s and t form one of 4 different typ es of
click (direction in which t lies relative to s as shown in Fig. 5.
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fi g. 5. Neighbour!' of a given s pixelof order 2 and associated pa rameters.

Fun ction cj> called the disparity func tion can be, for exa mple:

- I
1> (L1) =~

1+ ­s
It is to be noted that positive values of parameters 0i favour images with similar

levels of grey, while param eters of 0i< 0 favo ur images exhibiting g reat d iscrepancies
between grey levels. Moreover, th is mod el allows genera ting isotrop ic or an isotropic
textures depend ing on whether identical or d ifferent 0i a re used.

3.1.2. AUTOBINOMIAL MODEL

This model is characterised by its given energy function for a pure texture .

whe re the levels of grey belong to range [0, ]. In our specific case =255. This
model wa s used by Cross and Jain (1 983) for syn thesis and mod elling of real textures.

(4] . GF.RHAIU) WI~J(LF R . ImllSt' Anal.'!:,;s, Random Fid el!' and D.IIP1lmtic M o" tt> Carlo ,\<fetJ/()(/s. Springer-Verlag Berkub Coudkberg,
1995.
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Th is Energy function will yield a greater probabi lity of images with high levels of grey
and s values (light images), owing to the product of streng ths . The logarithmic factor tries
to compe nsate this effect.

4. SIMULATION BY METROPOLIS ALGORITHMS

Having specified an energy function E(x), th is uni vocally defines the probabil ity
distribution, that is, the Markov (or Gibbs ) field . The object ive set was obtaining
realisati ons proceeding from the defined probability d istribution. As the standard ising
cons tant Z is usually unknown, it is difficult to simulate. The Monte Carlo dyn ami c
algorithms have drawn considerable attention in this field. Given the nature of our
problem, 2 spec ific algorithms ha ve been selected . These algorithms yield the image by
mean s of an individual pixel updating sche me!",

SINGLE FLIP algorithm
Given a configura tion x RUN
START

Gene rate position in image (pixel) randomly
Generate level of grey Xs randomly Xs in range [0,255]
Let xsa be level of grey in position s in configuration x
If E(xs) <= E(xsa) then

New configuration z on repl acing level of grey by xsa
If not,

Let u be a random uni form number
If u > E(xsa) then

ew configuration z on replacing level of g rey xsa by Xs
If not the configurat ion does not update z=x

END

EXCHANGE Algorithm
Given a configuration x RUN
START

Gen era te 2 positions in image (pixels) s and t randomly s " t
Obtain a new image z exchang ing levels of grey corresponding to positions
s and t
If E(z) <= E(xs) then

New config uration z.
If not,

Let u be a rand om uniform number
If u > E(z)-E(x) then

New configuration z
If not the configuration does not update zeoc

END

(4 ). G ERHA RD W INKI.ER. ImaKf Analysis, Rllndom Fields and DynamiC Monte Carlo Methods. Sp ringer-Verlag Berkub Ccudkberg,
1995.
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It is to be highlighted that this last algorithm conse rves the grey level propo rtions
of the initial image, whi ch may in some cases be of cons ide rable inte rest.

Also note that this algorithm only updates one position in each run. Therefore, to
obtain a total scan of the image, the program must be run for at least the number of pixels
in the original image. The end image will be obtained by repeating the algorithm in an n
large nu mber size multiple of the original image. The converge nce of the algorithms
indicated can be found in'".

5. EXPERIMENTAL RESULTS

By using three different types of energy fun ction s, 2 as set out abo ve and often
found in the literature, and one defined by ourselves, and employ ing the Metropolis
algorithms ind icated, certa in examples we re produced of textures that fu lly met our
initial objectives.

Figure A . Texture obtained w ith model F. Each tile was a different
realisation obtained with the same parameters

A single texture was generated in Fig. A and this has been repeated in order to
visua lise the continuity effect at the boundaries.

Multiple realisat ions are presented in Fig. B of one same texture (each tile di ffers
from the others). It can be observed, even in thi s case, that there is an effect of continuity.

14). CU:HAN:D W INKI.H C Imog~ Analyst.., Random Fields and Dynamic Mont e CArlo Md hods. Springer-Verlag Berkub Ceud kberg,
1995.
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All the realisati ons are samples of the same texture, obtained by the simulation
algorithms mentioned above, which yield a sample with 5000 iterations each after
correc ting the starting algorithm a sufficiently high number of times for the realisations
to fit the probability distribution set as a model.

figure n. Texture obtained with the same model but w ith parameters allml'ing a fillergranule .

Figs. C and D show two di fferent textures obtained by simulating the probability
distribution of model f, on modifying this model's va riable param eters.

Figure C. Texture obtained wilh I1lf' same model but with parameters thaI smoothed the texture.
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Figurr D. Example ofa tatun' 8t'/1('rat('d "y clllmgi"x tilt' parameters ill IIII' fon'xoitlXmodel.

6. CONCLUSIONS

A wo rk method has been se t out thai allows obta ining di ffe rent tex tu res by
specifying a local energy function. The textures synthesised by Mar kov Random Fields
were continu ous owing to the neighb ourhood used . Vario us d ifferent realisation s were
also genera ted from a single textu re, whi ch were installed in a mosaic withou t breaks at
the edges.

Markov Random Fields are very useful in' gene rating textures that simulate nature' s
random beh aviour. In th is study, the ob jective was to se t an energy function and produce
an assoc iated texture. Fu tu re stud ies will involve using the method in the opposite sense:
given a natural structu re, parameter s will be sought that fit such a textu re in order to
imitate it.
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