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1. INTRODUCTION

In recent years computer assisted design has been widely used in branches of
industry such as ceramics, textiles, footwear, etc.

Specifically in the ceramic industry, the production of floor and wall tile designs
resembling natural textures like granite, marble, wood, etc. as closely as possible, would
appear to be a subject of considerable interest.

It would be very useful to have a user-friendly tool that allowed the professional
designer to generate different configurations of the same tile, while keeping the same
visual appearance (i.e. having a common characteristic that would permit differentiating
all the realisations belonging to the same texture). However, on observing these in detail,
they would be as different as two pieces of the same rock.

This led to setting two closely related objectives:

* In the first place, designing different textures by specifying just a few parameters.

* Secondly, obtaining different realisations of the same texture, in order to
approach nature’s random behaviour.

2. GENERAL DESCRIPTION OF THE METHOD

The mathematical methods chosen for generating the ceramic textures are called
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Markov Random Fields (MRF)". These techniques were selected as a result of the very
nature of the problem itself. Multiple random realisations are sought of the same
design, and MRF are precisely based on the consideration that multiple variables
behave in a random fashion while following a probability distribution. In our case,
the random variables are the pixels in the image, which can take on different levels of

grey.

The present paper is structured as follows; Section 2 provides a detailed explanation
of Markov random fields and describes two of the energy functions used for our
purposes. Section 3 gives an overview of the applied simulation methods and concludes
with a presentation of some of the most significant results obtained with the method.

3. MARKOV RANDOM FIELDS

A Markov random field will be a probability distribution on the set of all possible
images that satisfy certain properties. The distribution will have a characteristic shape, so
that certain configurations are more likely to be found than others.

In the images that follow a MRF there is a certain relation between the colour of
neighbouring points. This relation can be expressed mathematically as a potential
difference between these points.

An image can be interpreted as a function in plane XY, which assumes discrete
values between [0,255]7. Thus a representation of the image would be the function shown
in Fig. 1.

Fig 1. Representation of an image as a 3 dimensional surface. (a) Starting image. (b) Modelled image.

Let us assume a starting image as shown in Fig. 1, in which however the function
only assumes values at certain points of plane XY (discrete function), given by a grid of
positions s=(x , y), which we will call pixels. A level of grey (or colour) is associated with
each pixel in the range [0,255]. This defines a surface and each configuration will have a
different surface. Let us now imagine that the surface can be modelled at will, by
introducing for this purpose certain forces in each position (local forces), which will make
the surface smoother or rougher depending on the type of force defined in each position.

[1]. RaMA CHELLAPA AND PAUL JAIN. Markov Random Fields, Theory and Applications. Academic Press, Inc, 1991.
[2]. RAFAEL C. GONZALEZ AND PAUL WiNTz. Digital Image Processing. Addison-Wesley Publishing Company, 1987.
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The objective is to define certain local forces and allow the image to evolve, obtaining an
end image that will be the targeted texture in which the colour of a position s=(x, y) only
depends on its neighbours.

Neighbourhood of s
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| M. | pixels

Fig. 2. Representation of the image plane and neighbourhood used.

Having set out this idea in an intuitive form, we can now go on to formalise it.
Let an energy function given by E(x) represent the forces on the different pixels in
the previously described image. This energy defines a probability distribution given

by:
1
P(x) =Eexp(—E(x))

where P(x) is the probability that a given realisation x is obtained of the image, and
Z=%exp (-E(x)) is a standardisation constant whose value is obtained by calculating
the summation of the probabilities on the set of all the possible images. This
distribution is called the Gibbs Field"”. The meaning of the foregoing equation is that
the most probable images in this distribution are precisely those with the least
energy.

For the above distribution to be a Markov distribution, the following two
requirements need to be satisfied for energy:

* That a neighbourhood relation 8(s) be defined on the pixels in the image.

* That function E(x) be locally defined, according to defined neighbourhood &(s),
as a summation of local potentials V(xg) that will depend for each given pixel s
on the neighbouring pixels.

Another feature that has not yet been mentioned, but which appears very
interesting from a texture design point of view, is that of achieving continuity at the image
boundaries, that is, when the same image is set various times, the texture is not broken at
the edges. This has been done by defining the neighbourhood 8(s) at the image
boundaries in a special way. See fig. 3.

[3]. Anand Rangarajan and Rama Chellapa. Markov Random Field Models in image processing. The handbook of Brain Theory and
Neural Networks, (pp. 564-567),1995.
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Fig. 3. Boundary definition of neighbourhood.

The work to be done will involve defining the energy function (equivalent to the
forces acting locally) and proposing algorithms that allow any image (that will act as a
seed) to evolve, in order to obtain other, different, most probable configurations,
according to a locally specified probability distribution.

Fig. 3 shows a general schematic of the whole system used, in which the part
corresponding to the definition of local Energy remains to be explained. This is set out
below in Section 3, followed by the simulation algorithms.

DefiicionE(X) | __ip(X)=12%exp(-~(E(X)) '
Imagen 1
Algontmos . :
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inicial (semilla)
Imggen 3

Fig. 4. Schematic of the system used in generating random lextures.
3.1. TEXTURE MODELS

We have already stated that defining a random Markov field only involves inputting
an energy function expressed in a potential summation on image neighbourhoods.

At this point we will describe some Energy functions used for texture synthesis by
Markov Random Fields.
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The models provided depend on a set of parameters 0; such that different types of
texture can be obtained, depending on the value of these parameters.

3.1.1. MODEL ¢

Now we will look at an example of Energy that meets all the necessary requirements
for the resulting distribution to be a Markov distribution.

Let the energy function be given by,

E(x) = }4: 2 O xs - x1)

1 <s[0>i

The symbol <s,t>; indicates that positions s and t form one of 4 different types of
click (direction in which t lies relative to s as shown in Fig,. 5.
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Fig. 5. Neighbours of a given s pixel of order 2 and associated parameters.

Function ¢ called the disparity function can be, for example:

It is to be noted that positive values of parameters 6; favour images with similar
levels of grey, while parameters of 8;< 0 favour images exhibiting great discrepancies
between grey levels. Moreover, this model allows generating isotropic or anisotropic
textures depending on whether identical or different 8; are used.

3.1.2. AUTOBINOMIAL MODEL

This model is characterised by its given energy function for a pure texture.

E(x)=-Y 0y xox- F)uzxv-ln(N)
T g Xs

i

where the levels of grey belong to range [0, N]. In our specific case N=255. This
model was used by Cross and Jain (1983) for synthesis and modelling of real textures.

[4]. GERHARD WINKLER. Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag Berkub Geudkberg,
1995.
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This Energy function will yield a greater probability of images with high levels of grey
and ¢ values (light images), owing to the product of strengths. The logarithmic factor tries
to compensate this effect.

4. SIMULATION BY METROPOLIS ALGORITHMS

Having specified an energy function E(x), this univocally defines the probability
distribution, that is, the Markov (or Gibbs) field. The objective set was obtaining
realisations proceeding from the defined probability distribution. As the standardising
constant Z is usually unknown, it is difficult to simulate. The Monte Carlo dynamic
algorithms have drawn considerable attention in this field. Given the nature of our
problem, 2 specific algorithms have been selected. These algorithms yield the image by
means of an individual pixel updating scheme!.

SINGLE FLIP algorithm
Given a configuration x RUN
START
Generate position in image (pixel) randomly
Generate level of grey xg randomly xg in range [0,255]
Let x4, be level of grey in position s in configuration x
If E(xg) <= E(xgy) then
New configuration z on replacing level of grey by xg,
If not,
Let u be a random uniform number
If u > E(xg,) then
New configuration z on replacing level of grey xg, by xg
If not the configuration does not update z=x

END
EXCHANGE Algorithm
Given a configuration x RUN
START
Generate 2 positions in image (pixels) s and t randomly s = t
Obtain a new image z exchanging levels of grey corresponding to positions
sand t
If E(z) <= E(xs) then
New configuration z.
If not,
Let u be a random uniform number
If u > E(z)-E(x) then
New configuration z
If not the configuration does not update z=x
END

[4). GERHARD WINKLER. Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag Berkub Geudkberg,
1995.
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It is to be highlighted that this last algorithm conserves the grey level proportions
of the initial image, which may in some cases be of considerable interest.

Also note that this algorithm only updates one position in each run. Therefore, to
obtain a total scan of the image, the program must be run for at least the number of pixels
in the original image. The end image will be obtained by repeating the algorithm in an n
large number size multiple of the original image. The convergence of the algorithms
indicated can be found in'.

5. EXPERIMENTAL RESULTS

By using three different types of energy functions, 2 as set out above and often
found in the literature, and one defined by ourselves, and employing the Metropolis
algorithms indicated, certain examples were produced of textures that fully met our
initial objectives.

Figure A. Texture obtained with model F. Each tile was a different
realisation obtained with the same parameters

A single texture was generated in Fig. A and this has been repeated in order to
visualise the continuity effect at the boundaries.

Multiple realisations are presented in Fig. B of one same texture (each tile differs
from the others). It can be observed, even in this case, that there is an effect of continuity.

[4]. GERHARD WINKLER. Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag Berkub Geudkberg,
1995.
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All the realisations are samples of the same texture, obtained by the simulation
algorithms mentioned above, which yield a sample with 5000 iterations each after
correcting the starting algorithm a sufficiently high number of times for the realisations
to fit the probability distribution set as a model.

Figure B. Texture obtained with the same model but with parameters allowing a finer granule.

Figs. C and D show two different textures obtained by simulating the probability
distribution of model f, on modifying this model’s variable parameters.

Figure C. Texture obtained with the same model but with parameters that smoothed the fexture.
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Figure D. Example of a texture generated by changing the parameters in the foregoing model.

6. CONCLUSIONS

A work method has been set out that allows obtaining different textures by
specifying a local energy function. The textures synthesised by Markov Random Fields
were continuous owing to the neighbourhood used. Various different realisations were
also generated from a single texture, which were installed in a mosaic without breaks at
the edges.

Markov Random Fields are very useful in generating textures that simulate nature’s
random behaviour. In this study, the objective was to set an energy function and produce
an associated texture. Future studies will involve using the method in the opposite sense:
given a natural structure, parameters will be sought that fit such a texture in order to
imitate it.
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