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SUMMARY

This paper has been motivated by the lack of a system of classification for tilings
composed of square tiles, which is simple to use in specific applications of ceramic coverings.
The paper uses the theory of symmetry groups on the plane as a basis for a primary
classification of tilings made up of square tiles, rectangular tiles or sets of tiles which form
a square or rectangular surface.

In parallel to the theoretical development, this paper shows existing tilings to illustrate
some of the tilings described, with a table of occurrence of the different types of square tiles
and the different tilings.

The result obtained is a large number of tilings which may theoretically be generated
with the use of a single type of tile. This result suggests the obtention of an infinite number
of tilings provided consideration is made not of a single type of tile but rather a set of tiles
which form a square or rectangular surface.
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1.- INTRODUCTION

The different treatments given to the subject of tilings and mosaics from such diverse
viewpoints as the historical, geometrical, artistic, architectural, and crystallographic aspects
or the algorithms used in computer graphics have inspired the basis of this paper, whose
objective is the cataloguing of tilings.

This objective is justified by the fact that application of the theory of groups is not
synthesized for the cataloguing of ceramic coverings from the point of view of the multiplicity
of tilings which may be generated from a single type of tile.

The different ways in which the various tilings may be generated is a result of the
application of the theory of symmetry groups on the plane which has been fully covered in
the past. For this reason the procedure followed to carry out this work is based on the
compilation of the definitions of the different symmetry groups on the plane also known as
crystallographic groups on the plane or periodic groups, carried out by: Coxeter (1984),
Rose and Stanford (quoted in Alsina and Trillas, 1984), and Griinbaum and Shephard (1987),
although we recognise that there exist others formulated by other researchers.

The application of these plane symmetry groups to a marked square tile (where a
square tile is understood to be that which bears a motif on its surface which assigns a
certain point symmeltry group to the tile) is the point of departure of this study thus obtaining
a primary classification of the tilings formed by this type of tile.

From this classification we have sought a correlation with the classifications carried
out by Griinbaum and Shephard (1987).

2. BASIC CONCEPTS

Transformation on the plane

A transformation T on a set ¢ (of geometrical entities or transformations) is an action
which changes the initial state of 6 to a final state of 6”. In it a one-to-one correspondence is
established between all the points on the plane. The action of transformation may be denoted
as To = ¢”. If P is another transformation, then PTc is understood to be P(Tq).

Isometry

An isometry is a transformation on the plane which conserves the distance, in such a
way thatif p, g, are any two points on the plane to which an isometry is applied, transforming
them into p’, q°, segments pq and p’q” shall be equal. Two types of isometry may occur on
the plane.

Direct isometry, which conserves the direction and which may be:
- a rotation around a point called the centre of rotation.
- a translation in any direction.

Opposed isometry, which inverts the direction, and which may be:
- a reflection in a line.
- A glide-reflection, reflection in a line combined with a translation parallel to
the line.
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Symmetry
A symmetry is an isometric transformation which produces an image state
indistinguishable from the initial state. If S is a symmetry of o, then So = 6.

Symmetry Group.

S(o) is a symmetry group of a set ¢ , if it contains all the symmetries of o, i.e. if it
contains all the isometric transformations which produces an image state indistinguishable
from the initial state. The transformations of S(c) form a group if they satisfy the following
conditions:

1.- given any two elements A,B of S(o), their product AB is in S(o).
2.- given any three elements A,B,C of S(c), A(BC)=(AB)C.
3.- there exists an element I in S(c), called the identity element such that IA=A for
each element A of S(o).
4.- given any element A of S(o), there exists an element A" in S(o) called the inverse
of A, such that
AAT=ATA=T

The number of mutually different transformations is called the "order” of the group.
The set has symmetry or is symmetric if the order of S(o) is greater than or equal to 2. The
set is asymmetrical if the order of S(o) is equal to 1, i.e. if S(6) contains only the identity
element.

Point Symmetry Groups.
These may be cyclical and dihedral:

a) Cyclical groups of the order n (Cn) are symmetry groups which contain "n" angle
rotations "2r /n" around a fixed point called the centre of rotation. If n=1, a cyclical group
C1 exists which contains a single transformation, the identity.

b) Dihedral groups of the order 2n (Dn) are symmetry groups which contain "n" rotations
around a fixed point and "n" reflections in "n" lines equally inclined to each other which
pass through the same fixed point. If n=1 (D1 of the order 2) there exists the dihedral group
which contains the identity and a reflection in a line. If n=2 (D2 of the order 4), there exists
the dihedral group which contains the identity, two perpendicular reflections and an angle
'n ", around a fixed point in which the lines of reflection intersect. When "n" is greater than
or equal to 3, Dn is the symmetry group of a regular polygon with "n" sides. Finally, if n=co,
Deo contains all the rotations around a fixed point and all the reflections of lines passing
through said point. This is the symmetry group of a circular disc.

All groups Cn, Dn ("n" greater or equal to 1), have the property of possessing a fixed
plane point, and are therefore called point symmetry groups, and are the only symmetry
groups which may have a closed compact set.

Symmetry Groups in a Ribbon.

If the symmetry group contains a translation {na}, where "n" is an integer and "a" a
vector of direction, where any other isometry may be contained, we have an infinite one-
dimensional group, or symmetry group of a ribbon, strip or frieze.

Symmetry Groups on the Plane

If the symmetry group contains two independent translations whose direction is neither
parallel nor opposed {na+mb} where "n"and "m" are integers and "a" and "b" are fixed vectors,
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where any other isometry may be contained, we have an infinite two-dimensional group or
symmetry group on the plane.

If we take a fixed point on the plane and apply to it all the translations obtained by
combining "n" translations of "a" and "m" translations of "b", we shall obtain a lattice of
points. In general, this lattice of points may be seen as the vertices of a parallelogram. The
vectors "a" and "b" correspond to any pair of adjacent sides of a parallelogram in the lattice.
From this lattice may be extracted a region understood to be the minimum region on the
plane which, by means of the application of the appropriate isometries will define the
composition of the parallelogram.

Crystallographic Constraint.

W. Barlow (quoted in Alsina and Trillas, 1984) demonstrated that the only rotations
which may form part of a symmetry group are those of the order 2, 3, 4 or 6, i.e. the rotations
of an angle of 180°, 120°, 90° and 60°. With this constraint, there only exist 7 symmetry
groups in ribbons and 17 symmetry groups on the plane.

This paper is centred solely on the generation of the 17 symmetry groups on the plane.
In order to distinguish each of these we have used the international group symbol (Griinbaum
and Shephard, 1987, p.44).

Definition of the transformations which make up each of the 17 symmetry groups on
the plane varies according to the researcher. Table 1 shows those used by Coxeter (1984),
Rose and Stafford (quoted in Alsina and Trillas, 1984) and Griinbaum and Shephard (1987).

Diagram of the Symmetry Group.

By diagram of the symmetry group (Grinbaum and Shephard, 1987, p.37), we
understand that group in which the transformations, (reflections, glide-reflections, rotations
and translations) which define the symmetry group have been represented.

Isomorphism

Two symmetry groups S(c1) and S(c2) are isomorphic, if the group diagram of one
can be made to coincide with the group diagram of the other by application of a suitable
affinity (Griinbaum and Shephard, 1987, p.38). Geometrically, this means that any lattice
may be made to coincide with another, using a suitable affinity. This may be described as
the application of a rigid movement, a change of scale or a change in the angle between
axes. If S(61) and S(02) are isomorphic, then 61 and 62 have the same point of symmetry.

Flat Tiling

This is a countable family of compact closed sets which cover the plane without gaps
or overlaps. The different closed compact sets are called tiles. The theory of symmetry
groups may be applied to the tilings, thus to arrive at the following concepts:

Symmetry Groups of a Tile S(B): this is the set of symmetries which produce an image
state of the tile which is indistinguishable from the initial one.

Symmetry Group of a Tiling S(E): this is the set of symmetries which trace each tile in
the tiling onto any other.
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3.- CONSTRAINTS OF THE PROBLEM

Classification of tilings by application of the group theory must face a great variety of
factors which may be involved therein, from the different tile shapes which may exist to the
relative arrangement of each tile with respect to the adjacent tiles, or the number of different
tiles which may appear in a tiling, as well as with many other factors. For this reason we
have introduced the following constraints in this first phase:

1.- All the tiles which make up the tiling are equal, in shape and size.

2.- The tiling is edge to edge: i.e. the corners of the tiles coincide with the vertices of
the tiling, and the sides of the tile with the edges of the tiling, and each side of a tile is
precisely the side of another tile.

3.- The tiling is periodic and symmetrical, i.e. there exist in the symmetry group of the
tiling S(E) at least two non-parallel translations and any symmetry in addition to the identity.

4.- All the symmetries of the tile are symmetries of the tiling, i.e. the transformations
which constitute S(B) are also transformations which are in S(E). This is analogous to
considering that for any two tiles in tiling E, there exists a symmetry in S(E) which traces
one of the tiles onto the other, and that for each tile, the symmetries of S(B) are in one-lo-one
correspondence with the symmetries of S(E) which trace B on itself.

This constraint is equivalent to considering only isohedral tilings. Such tilings have
been defined by Griinbaum and Shephard (1987, p.31) as follows: "if all the tiles in a tiling
E are equivalent, i.e. if the tiling's symmetry group S(E) contains a transformation which
traces one tile onto another, the tiles are said to form a transitive class and the tiling is said
to be tile-transitive or isohedral.

5.- The shape of the tile making up the tiling is square, leading us to a symmetry group
for the tile of D4 (dihedral group of order 8). The symmetries of a square which leave it
indistinguishable from the initial one are:

- the identity

- the 4 reflections in the lines which, passing through the centre of the tile, form
45°, 90°, 135°,180°.

- the 3 rotations in the centre of the tile of 90°, 180°, 270°,

At the same time, the square tile generates a tiling E, whose symmetry group S(E) is
P4M. This means that the symmetry groups which contain rotations of 60° and/or 120°.
since they are not subgroups of D4 or P4M, may not be generated by a square tile. This
eliminates the following symmetry groups in the tile: C3, C6. D3, D6, and the following
symmetry groups in the plane: P3, P3M1, P31M, P6, P6M.

Finally, if we consider that the tile bears a marking on its surface, the symmetry group
of the former shall be modified by inclusion of the latter. In this case, the symmetry groups
of the marked tile S(Bm) and the symmetry group of the marked tiling S(Em), are necessarily
subgroups of the symmetry groups corresponding to the basic unmarked tiling. In other
words, the symmetry groups S(B) and S(E) of the unmarked tiling will tend to be reduced
when the mark is introduced in the tile, given that isometries may exist which are symmetries
of the unmarked tiling E but which are not symmetries of the marked tiling Em (Griinbaum
and Shephard, 1987, p.270).
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The possible marks or patterns which may be borne by a tile are infinite if consider
the design in itself (vegetable, geometrical, heraldic, etc.). Nonetheless, we may analyze the
symmetries of the pattern to obtain eight different square marked tiles which differ in their
symmetry groups. For all this we have used as the basic pattern an "L" shape, like that used
by Griinbaum and Shephard (1987, p.270), from whence we have also assumed the distinction
of the symmetry groups in the tile, D1 and D2 according to whether the symmetries refer to
the axes which pass through the mid-points of the sides or to the axes determined by the
diagonals of the square, using D1C or D2C when they refer to the axes which pass through
the mid-points of the sides, and D1L or D2L when they correspond with the axes determined
by the diagonals.

T R T T NN

S(B)=C1 S(B)=C2 S(B)=C4 S(B)=DIC S(B)=D2C S(B)=DIL S(B)=D2L S(B)=D4

-FIGURE 1 -

4.- ANALYSIS OF THE SYMMETRY GROUPS IN THE PLANE

In order to carry out this analysis, the diagrams of the symmetry groups in the plane
have been represented, i.e. the rotations, translations, reflections and glide-reflections which
define or generate it have been traced, together with the arrangement of the pattern
corresponding to each group (Alsina y Trillas, 1984).

In each diagram we have looked for the possible fundamental parallelograms which
allow the plane to be covered by means of two parallel translations to the sides thereof.

We have then looked for the minimum region made up by each fundamental
parallelogram, in such a way that, by means of the application to this region of isometries
contained in the symmetry group the tiling is generated.

In this way we have obtained the minimum regions which, by means of the application
of certain isometries, are capable of generating a tiling of parallelograms. This tiling of
parallelograms is directly related with the specific symmetry group of the plane, since it
has been obtained from it.

Once this analysis has been carried out, we have assimilated the minimum region to
one tile, on the basis of which we have made the following considerations:

1.- If two tilings have the same type of symmetry, their group diagrams are isomorphic,
and we may, by means of the application of a suitable affinity (rigid movement, change of
scale or change of angle between axes), make not only the group diagram, but also the
minimum regions, coincide. For this reason the minimum region, which always has the
shape of a parallelogram, may be made to coincide with a square. Furthermore, considering
the concept of isomorphism, we may extend the subject of tiling classification and consider
the classification of tilings made up of rectangular tiles.
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This extension of the classification only requires that it be considered that the rectangle
corresponds to a symmetry group D2 (dihedral group of Order 4) and this rectangular tile
generates a tiling E whose symmetry group S(E) is PMM.

If we consider that the tile bears a pattern on its surface, the symmetry group of the
former shall be modified by the latter. Analogously to that stated above for the square marked
tile the rectangular marked tile may only be of four different types which differ in their
symmetry group. Since the symmetry groups of the rectangular marked tile must be sub-
groups of the unmarked tile, these shall be: C1, D1, C2, D2.

2.- The symmetry groups of the tiles with cyclical sets, C1, C2, C3 and C4 do not
contain reflections, for which reason these tiles cannot generate tilings with symmetry groups
which contain reflections. This constraint places an excessive restriction on the classification
which we are seeking, and therefore if we allow that a tile with a cyclical symmetry group
may generate a tiling with a symmetry group which contains reflections, we are allowing a
tiling made up of two types of tiles, the original one and the symmetrical one. This leads us
to consider the possibility not only of making a classification for the case of tilings made up
of a single type of tile, but also of attempting to classify at the same time tilings made up of
sets of tiles.

A set of tiles, following the criteria used for one tile, has been assimilated into the
minimum region, for which reason the set of tiles must necessarily define a square or
rectangular surface. Likewise, this set of tiles must have an associated point symmetry group,
which shall be either one of those corresponding to the square marked tile, or those of the
rectangular marked tile.

3.- Certain isometries applied to the minimum region necessarily require to be applied
on minimum regions of a square shape. For this reason we have indicated in the drawings
two types of shapes for the minimum region or tile: square and rectangular, so that the
appearance of a square shape indicates that the tile or sets of tiles must necessarily be
square in shape and the appearance of a rectangular shape indicates that the tile or set of
tiles may be either square or rectangular.

Figures 2 and 7 show the diagrams of the 12 symmetry groups in the plane compatible
with the square tile. In each is indicated:

- the isometries which characterize it.

- the fundamental parallelograms which may be defined.

- the minimum regions which may be extracted from each fundamental parallelogram.

- the different square marked tiles, rectangular marked tiles or sets of marked tiles
which can generate a tiling with that determined symmetry group, with an indication in
each one of the isometries which must be applied to them.

5.- RESULTS.

As a consequence of the above analysis, we can make a primary classification of tilings
made up of square marked tiles, rectangular marked tiles or sets of marked tiles which form
a square or rectangular surface, considering the symmetry group of the tile and the isometries
applied thereto (rotation, translation, reflection, glide-reflection). For this purpose we group
together all tiles of the same type, i.e. those with the same symmetry group, indicating the
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isometries applied to each of them which lead us to a determined symmetry group in the
tiling.

The nomenclature of any tiling must indicate the symmetry group of the tile or set of
tiles and the symmetry group of the tiling in that order.

The distinction between the tiling made up of a single type of tile, square or rectangular,
and the tiling made up of a set of tiles, is made by means of the following nomenclature
procedure:

a) Tiling made up of a single type of square tile: S(B) - S(E)
b) Tiling made up of a single type of square tile: S(B),R - S(E)
c) Tiling made up of a set of tiles: S(B) (x,y) - S(E)

where “x” is the number of tiles on one side and “y” the number of tiles on the
adjoining side.

If the set of tiles forms a square surface, we have abbreviated it as follows: S(B) (x) -
S(E)

In the case where there exists for the same type of tiles various tilings with the same
symmetry group, these are distinguished by means of the addition of a number in parentheses:

S(B) - S(E)(1)
S(B) R - S(E)(1)
S(B) (x.,y) - S(E)(1)

Tables 2 and 3 show the proposed classification. In these, starting from the symmetry
group of the tile or set of tiles, and considering the isometries applied to each tile, one
obtains the nomenclature of the tiling which we propose. These tables also show the
correspondence between these nomenclatures and those proposed by Griinbaum and
Shephard (1987).

6.- CONCLUSIONS.

The classification obtained makes it possible to catalogue edge-to-edge tilings made
up of square tiles, rectangular tiles or sets of tiles which form a square or rectangular surface,
according to the symmetry group of the tile forming the tiling and according to the symmetry
group of the tiling. The latter is derived from the application of determined isometries to
the tile or set of tiles.

On analysis of the different diagrams of the symmetry groups in the plane, the
fundamental parallelograms, we have observed that:

1-. If the arrangement of the patterns in the fundamental parallelogram responds to or
is a consequence of the isometries which define the symmetry group of said parallelogram,
the latter determines a tile with a certain symmetry group which leads us to a symmetry
group of the tiling, in accordance with the classification proposed. When this occurs, the
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fundamental parallelogram is one of the minimum regions and the tiling is isohedral.

2.- If the arrangement of the patterns in the fundamental parallelogram is the
consequence of the addition to the isometries which make up the symmetry group of said
parallelogram, of other isometries not included in the symmetry group thereof, this
parallelogram determines a tile with a certain symmetry group which leads us to a symmetry
group on the tiling which shall be different to that indicated in the classification. When this
occurs, the parallelogram shall not be a minimum region and the tiling is not isohedral.
These cases are shown in the tables of diagrams of symmetry groups in the plane using an
asterisk in parentheses (*), and its classification is left to future studies.

It is also interesting to indicate that in the case of the tiling with symmetry group C1,
we have found that the application of the isometries corresponding to a determined symmetry
group in the plane may generate visually different tilings. This occurs when the arrangement
of the isometries which are to be applied to the tile may be located in different positions,
i.e. when keeping the marked tile with the same orientation, the positions of the isometries
which are to be applied to it are moved cyclically in a single direction. In this way the
relative positions between the pattern and the isometries are modified, this generating
visually different tilings. These cases are shown in Figures 2 to 7 by means of a number in
parentheses which indicates the number of visually different tilings which may be produced.

It has been considered illustrative to give examples of the only tilings which may be
generated with square tiles. Figure 8 shows the tilings which may be obtained using a tile
with cyeclical group C1, C2 or C4, and Figure 9 shows those obtained with dihedral tiles
D1C, D1L, D2C, D2L o D4.

From these examples we may deduce that the tile C1 is that which may generate the
greatest number of tilings (6 different ones), because the symmetry group of the tile only
contains the identity (Order 1), and the tiles which can only generate one tiling are those
corresponding to symmetry group C4 (Order 4) and symmetry group D4 (Order 8). In other
words, as the order of the symmetry group of the tile is increased, the possibility of obtaining
different tilings made up of a single type of tile decreases.

The search for real examples which validate the practical application of this work is
shown in Table 4. These examples, obtained from Barnard (1979), Barros and Almasque
(1988), Catleugh (1983), Gonzalez (1952), Lemmen (1988) and Porcar (1987), indicate that
most of the applications correspond to tiles with symmetry group D1L (48 out of 121) or D4
(31 out of 121), which generate tilings with symmetry group P4M (84 out of 121). The other
possible tilings are used in very isolated applications in specific cases of ceramic coverings.
With the same object, Figures 10 and 11 show two fragments of pavements from the Museum
of Decorative Arts in Prague which exemplify the D2L-P4M type of tiling according to the
proposed classification, while Figure 12 shows another fragment as an example of Tiling
D1C(2,1)-PMG.

Finally some aspects are set out in which the authors are currently working, within
this line of research.

- modification of the square or rectangular shape by shapes which are also four-sided,
but with angles in the vertices which are not 902,

- modification of the square or rectangular shape by shapes which have a number of
sides other than four (triangle, pentagon, hexagon, etc.).
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- modification of the set of square tiles which form a square or rectangular surface, by
a set of square tiles which do not form a rectangular surface.

- use of combinations of sets of tiles of different shapes.

- introduction of the pattern drawing (geometrical, heraldic, anthropomorphic, floral,
vegetable, etc.) into the classification.

- introduction of colour into the classification.
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International | Coxeter Rose and Stafford Griinbaum and Shephard
Group
Symbol
P1 2 translations No S{mmat axes 2 translations
No glide-reflection axes
Maximum turning order = 1
PM 2 reflections Symmetry axes 2 translations
o perpendicular symmetry axes 2 reflections
No glide-reflection axes
PG 2 parallel glide- Clide-reflection axes 2 translations
reflections No symmetry axes 2 glide-reflections
No perpendicular glide-reflection axes
CM 1 reflection S¥mmct axes 2 translations
1 parallel glide- Glide-reflection axes parallel to those of symmetry 1 glide-reflection
reflection No peg:eudicular symmetry axes 1 reflection
No glide-reflection axes perpendicular to those of symmetry
P2 3 half-turns No symmetry axes 2 translations
No glide-reflection axes 4 Period 2 rotations
Maximum turning order = 2
CMM 2 ﬂerpendicular Symmetry axes 2 lranslations
reflections Perpendicular symmetry axes 2 glide-reflections
1 half-turn No Order 6 or Order 3 turning centre 2 reflections
Symmetry group of the rectangle formed by symmetry axes = C2 4 Period 2 rotations
PMM The reflections Symmetry axes 2 translations
in the four sides Perpendicular symmetry axes 4 rellections
of a rectangle No Order 6 or Order 3 turning centre 4 Period 2 rotations
Symmetry group of the rectangle formed by symmetry axes = C1
PGG 2 perpendicular Reflection axes 2 translations
ghde-reflections Perpendicular glide-reflection axes 2 glide-reflections
No symmetry axes 2 Period 2 rotations
PMG 1 reflection S{ et:?( axes 2 translations
2 half-turns Glide-reflection axes perpendicular to those of symmetry 2 glide-reflections
No perpendicular symmetry axes 1 reflection
2 Period 2 rolations
P3 2120° turns No symmetry axes 2 translations
No glide-reflection axes 3 Period 3 rotations
Maximum turning order = 3
PaM1 1 reflection Symmetry axes 2 translations
1120° turn Perpendicular symmetry axes 1 glide-reflection
Order 3 turning centre 1 reflection
Symmetry ﬁmup of the triangle formed by three symmetry 3 Period 3 rotations
axes such that no other symmetry axis inlersects it = C1
No Order 6 turning centre
P31M The reflections Symmelry axes 2 translations
in the three sides Pe;g)endicular symmetry axes 1 glide-reflection
of an equilateral Order 3 turning centre 1 reflection
triangle Symmetry group of the triangle formed by three symmetry 2 Period 3 rotations
axes such that no other symmetry axis intersects it = C3 or D3
No Order 6 turning centre
P4 1 half-turn No symmelry axes 2 translations
1/4 turn No glide-reflection axes 1 Period 2 rotation
Maximum turning order = 4 2 Period 4 rotations
PaG 1 reflection Symmelry axes 2 translations
1/4 turn Perpendicular symmetry axes 2 glide-reflections
Symmetry group of the rectangle formed by symmetry axes = C4 1 reflection
No Order 6 or Order 3 turning centres 1 Period 2 rotation
1 Period 4 rotation
Pam The reflections Symmetry axes 2 translations
* |inthe three sides | Perpendicular symmetry axes 1 glide-reflection
of a triangle with ﬁ(mm group of the rectangle formed by symmetry axes = D1 or D2 3 reflections
angles of 45°, 45° o Order 6 or Order 3 turning centres 1 Period 2 rotation
and 90° 2 Period 4 rotations
P& 1 half-turn No symmetry axes 2 translations
1 120° turn No glide-reflection axes 1 Period 2 rotations
Maximum turning order = 6 1 Period 3 rotation
1 Period 6 rotation
P6M The reflections in Symmetry axes 2 translations
the three sides of a Perpendicular symmetry axes 1 Period 2 rotation
lnan§le withangles | Order 6 turning centre 1 Period 3 rotation
of 30°, 60° and 90° 1 Period 6 rotation
2 glide-reflections
2 reflections

- TABLE 1 -
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