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ABSTRACT 

The forming of ceramic tiles is a complex process in which a bed of powder is 
transformed into a rigid, continuous material. During this process, the properties of the 
powder undergo changes as compaction pressure increases, decreasing porosity until it 
reaches a minimum value, which depends on various factors such as the pressure 
applied, moisture content and initial porosity, among others. 

The forming process has advanced to the point where tiles with pronounced 
reliefs and large ceramic slabs can be formed. However, these advances in the 
manufacture of ceramic bodies have entailed major technical challenges. Indeed, a 
significant increase has arisen in the occurrence of defects, including crack formation, 
excessive deformations and heterogeneous bulk density distributions in tiles or slabs. 
These defects compromise the structural integrity of the ceramic bodies, generating 
premature failure and impacting the durability of the product. Therefore, accurate and 
validated numerical models are essential to predict and optimise the forming process. 

This paper proposes to calibrate the Drucker–Prager Cap (DPC) elasto-plastic 
model for use in simulating the tile forming process, using solid mechanics and the finite 
element method (FEM). This model is an extension of the Drucker–Prager yield model, 
widely used in the study of geological materials that exhibit pressure-dependent yield 
behaviour. 
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1. INTRODUCTION 

The process of forming ceramic tile bodies represents a major manufacturing 
challenge, combining science and technology to transform a bed of powder into a solid, 
continuous material. In this process, the powder undergoes a transformation in which 
its properties change dramatically as compaction pressure increases and bed porosity 
decreases to a minimum value. Unfired body porosity, crucial in defining end product 
quality, depends on several factors, such as the maximum pressure applied, moisture 
content of the pressed powder, and particle size distribution in the powder, among 
others. 

Body forming has historically been performed using the semi-dry uniaxial 
pressing technique, which involves the use of highly flowable granular powder and 
hydraulic presses equipped with metal dies. While effective, industry demands in recent 
years have led the method to be partially replaced by continuous compactors, which 
have made it possible to manufacture large-sized ceramic slabs, with widths up to 2000 
mm and lengths of over 3000 mm [1]. Furthermore, the constant evolution of the 
ceramic tile industry has also enabled three-dimensional pieces with very pronounced 
reliefs to be produced. 

Such advances in ceramic body manufacturing have brought with them a number 
of significant technical challenges. In particular, a notable increase has been seen in the 
appearance of defects, cracks, excessive deformations and heterogeneous bulk density 
distributions in tiles or slabs. These defects can compromise the structural integrity of 
ceramic bodies, affecting the durability of the end product. Given this context, it is 
essential that accurate and validated numerical models to predict material behaviour 
be made available in order to anticipate and optimise the forming process. 

This study proposes an innovative approach to model the ceramic tile forming 
process. The approach is based on applying solid mechanics principles and using the 
finite element method (FEM). A key part of such a process is the implementation of a 
model that describes the elasto-plastic behaviour of the powder bed during forming. 
One of the most widely used models in powder forming is the elasto-plastic Drucker–
Prager Cap (DPC) model, an extension of the Drucker–Prager yield model. Although 
originally developed for the study of geological materials with pressure-dependent yield 
behaviour [2,3], the DPC model has the necessary characteristics to adequately 
describe the behaviour of the powder bed and possible fracture of the material during 
ceramic forming. 

The main objective of this research focuses on the calibration and validation of 
the DPC model applied to the forming of porcelain stoneware tile bodies. Such a task 
involves collecting experimental data obtained from laboratory tests specifically 
designed to describe the behaviour of porcelain stoneware tile powder beds. Through 
this calibration process, the parameters of the DPC model can be adjusted to achieve 
an accurate match of the numerical results and the experimental data. 
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Once the calibration and validation processes have been successfully completed, 
the model can be used to accurately predict material behaviour during the forming of 
ceramic bodies under a wide variety of conditions. In addition, it allows process 
parameters to be optimised [4], which significantly contributes to improving the 
efficiency and quality of tile body manufacturing. 

 

2. OBJECTIVE 

The main aim of this work is to calibrate a DPC elasto-plastic model for application 
in the modelling of the ceramic tile forming stage. The ultimate goal is to predict powder 
bed deformation during forming, the stress state and bulk density distribution in the 
material after pressing. 

 

3. DRUCKER–PRAGER CAP BEHAVIOUR MODEL 

The material model used in this study is a modified version of the DPC model, as 
proposed by several authors [5,6]. This model is by far the most widely used to describe 
the mechanical behaviour of powder during the compaction process of a powder bed 
[7]–[10], as it accurately describes the stress, displacement and density distributions 
within the bed during the forming process. As a starting point, the version implemented 
in the ABAQUS® commercial software was used. That version was modified by defining 
the model parameters as a function of volumetric plastic deformation, which in turn 
may be related to the density of the material. The modification was introduced through 
a user subroutine (USDFLD) available in ABAQUS® to formulate solution-dependent 
parameters. 

As figure 1 shows, the DPC yield surface is bounded by three surfaces: a conical 
shear surface (present in the classical form of the Drucker–Prager yield criterion), an 
elliptical surface (called the “cap”), and a transition surface between the two, to 
establish a smooth transition and avoid numerical instabilities.  

 

 Figure 1. p-q diagram of the modified Drucker–Prager Cap model 
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Consequently, the yield condition consists of the three separate equations shown 
below: Fs(p,q), FC(p,q) and FT(p,q) (in which the subscript letters refer to shear surface, 
cap surface and transition surface, respectively): 

 

𝐹!(𝑝, 𝑞) = 𝑞 − tan	(𝛽)𝑝 − 𝑑 = 0 ( 1 ) 

𝐹"(𝑝, 𝑞) = 0(𝑝 − 𝑝#)$ + 2
𝑅 ⋅ 𝑞

1 + 𝛼 − 𝛼/cos	 𝛽
;
$
− 𝑅(𝑑 + 𝑝#tan	 𝛽) = 0 

( 2 ) 

𝐹%(𝑝, 𝑞) = 0(𝑝 − 𝑝#)$ + 2𝑞 − <1 −
𝛼

cos 𝛽=
(𝑑 + 𝑝#tan	 𝛽);

$
− 𝛼(𝑑 + 𝑝#tan	 𝛽) = 0 ( 3 ) 

 

where p and q are the hydrostatic pressure and Von Mises equivalent stress, 
respectively. In addition, the model available in ABAQUS® applies a plastic flow rule 
associated with the cap surface (Gc) and a non-associated flow rule (Gs) in the shear 
surface and in the transition surface defined by equations (4) and (5). 

𝐺"(𝜎) = 0(𝑝 − 𝑝#)$ + 2
𝑅 ⋅ 𝑞

1 + 𝛼 − 𝛼/cos	 𝛽
;
$
 

( 4 ) 

𝐺&(𝜎) = 0[(𝑝 − 𝑝#) tan𝛽]$ + 2
𝑞

1 + 𝛼 − 𝛼/cos	 𝛽
;
$
 ( 5 ) 

  

Thus, the DPC model is fully defined by determining the five constitutive 
parameters used in the yield condition given by (1)–(3): material cohesion d and friction 
angle β required to define the shear surface, “cap” eccentricity R, and evolution 
pressure pa (or, alternatively, the hydrostatic yield pressure pb); see figure 1 to define 
the shape and position of the cap and parameter α that governs the transition region 
(i.e. the connection between the cap and the shear failure surface). 

Model modification consists of implementing the evolution of the parameters 
during the compaction process. This change in the plastic parameters during plastic 
deformation is called “hardening”, which in this particular study is directly linked to the 
bulk density of the material. 

In turn, bulk density is related to an internal variable, common to any elasto-
plastic model, called volumetric plastic deformation, 𝜀'( (plastic deformation that implies 
a change of volume in the material). Therefore, it is possible to relate the bulk density 
of the material to the 𝜀'( by means of the following expression: 

 

𝜀'( 	= 	 ln
𝜌
𝜌)

 

 
( 6 ) 

where 𝜌 and 𝜌) represent current and initial bulk density (corresponding to a volumetric 
plastic deformation of 0), respectively. 
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4. EXPERIMENTAL PROCEDURE 
The experimental procedure carried out to obtain the physical properties of a 

powder bed in its forming process, as well as the equipment and materials used, are 
described below. 

 

4.1. MATERIALS AND EQUIPMENT 
The following materials and equipment were used to calibrate the model. 

4.1.1. POWDER MATERIAL 
A standard spray-dried powder used in the manufacture of porcelain stoneware 

tile was employed as the powder material. Powder moisture content on a dry basis 
during its characterisation was 6.5%. Figure 2 shows the size distribution of the powder 
granules. 

 

 
Figure 2. Granule size distribution of the powder used 

 

4.1.2. INSTRUMENTED DIE USED TO CHARACTERISE THE 
SPRAY-DRIED POWDER 

Figure 3 shows the instrumented die used in this study to characterise the 
mechanical properties of the powder by means of an oedometer test. Oedometer testing 
makes it possible to quantify both the compressibility and the deformation of a powder 
when a progressive vertical load is applied to it. The process consists of two stages: a 
loading stage, in which the vertical load is progressively increased, and an unloading 
stage, in which the vertical load decreases.  

The die in which the test was carried out is made of carbon steel and has a lateral 
shank through which the radial force exerted by the powder against the die walls during 
pressing is transmitted. Therefore, the containment die has a cross-through hole and a 
radial load cell is fitted to record the pressure exerted laterally by the powder.  
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Using this die, it was possible to simultaneously record the axial pressure exerted 
on the powder and the radial pressure exerted by the powder on the die walls.  

 

 
Figure 3. Instrumented die used to calibrate the model 

 

4.1.3. FLOATING DIE USED TO FORM CYLINDRICAL TEST 
SPECIMENS 

Figure 4 shows the floating die used in this study to form cylindrical specimens 
with which to calibrate the model. The carbon steel die comprises an upper punch to 
transmit the axial force of the press to the powder, and a floating containment die, 
connected to the base by means of springs. The purpose of this floating die is to 
minimise the effect of friction exerted by the die walls on the powder. This enables 
cylindrical specimens with an aspect ratio (height/diameter) greater than 2 and the 
homogeneous density required for uniaxial compression tests to be obtained. 

 
Figure 4. Floating die used for pressing test specimens with a high aspect ratio.
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4.1.4. UNIVERSAL TEST MACHINE 
An INSTRON 5889 universal test machine, shown in figure 5, was used to record 

the experimental data during the pressing and fracture tests. The machine had built-in 
200kN load cells, both at the top and the bottom of the die, which enabled the upper 
and lower axial pressure exerted by the equipment on the powder and on the formed 
specimens to be monitored during the course of the study. In all the tests carried out, 
piston displacement speed was 0.035 mm/s. 

 
Figure 5. Instron 5889 universal test machine used in the calibration procedures. 

 

4.2. IDENTIFICATION OF MODEL PARAMETERS 

4.2.1. SHEAR FAILURE SURFACE PARAMETERS 
Shear failure surface is determined in the p-q plane by Eq ( 1 ), the parameters 

of which are β (friction angle) and d (material cohesion). Both parameters can be 
determined from diametral compression and uniaxial compression tests. 

A diametral compression test consists of compressing a cylindrical specimen by 
applying force in the radial direction. The test consists of determining the radial tensile 
strength (𝜎!) of the specimen from the maximum compressive force (reached 
immediately before the specimen breaks) using the following formula: 

 

𝜎! =
2𝐹!
𝜋𝐷ℎ	

( 7 ) 

 
where Ft represents the crushing force and D and h are the diameter and 

thickness of the test piece, respectively. 

Uniaxial compression testing consists of also compressing a cylindrical specimen 
but this time, the force is applied in the axial direction. In this test, axial compressive 
strength (𝜎") is obtained from: 

𝜎" =
4𝐹"
𝜋𝐷#	

( 8 ) 

 
where Fc is the maximum axial compressive force (read the instant before the specimen 
breaks).  
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Once 𝜎! and 𝜎" have been obtained, it is possible to determine β and d by means 
of the following expressions [11]:  

 

𝛽 = 	 𝑡𝑎𝑛*+ H
3(𝜎, −√13𝜎-)
𝜎, − 2𝜎-

L ( 9 ) 

𝑑 =
𝜎,𝜎-(√13 − 2)
𝜎, − 2𝜎-

 ( 10 ) 

 

For more detailed information about the experimental procedure implemented in 
both tests, please see reference [12] in the bibliography. 

A total of 4 uniaxial compression tests and 4 diametral compression tests were 
carried out using test pieces 200 mm in diameter and 8 mm and 400 mm thick, 
respectively. Previously, these test specimens had been formed at 4 different maximum 
pressures: 8, 22, 250, 500 kgf/cm2. Given the scatter to be expected in this type of 
test, 3 repetitions were carried out for the uniaxial compression test and 10 for the 
diametral compression test. 

 

4.2.2. “CAP” YIELD SURFACE PARAMETERS 
To define the “cap” yield surface, 4 parameters need to be determined: R 

(eccentricity), pa (evolution pressure), pb (hydrostatic yield pressure) and α	(transition 
region). Variable α		usually lies between 0.01 and 0.05: in this study, it was set at 0.03. 
The other parameters can be calculated from an oedometer test during powder bed 
compression using the following expressions [13]:  

𝑅 = 0
2(1 + 𝛼 − 𝛼/cos𝛽)$

3𝑞)
(𝑝 − 𝑝#) 

 

( 11 ) 

𝑝! = −
[3𝑞 + 4𝑑tan𝛽(1 + 𝛼 − 𝛼/cos𝛽)"]
4[𝑡𝑎𝑛 𝛽 (1 + 𝛼 − 𝛼/cos𝛽)]" +

G9𝑞" + 24𝑑𝑞 𝑡𝑎𝑛 𝛽 (1 + 𝛼 − 𝛼/cos𝛽)" + 8(3𝑝𝑞 + 2𝑞")[𝑡𝑎𝑛 𝛽 (1 + 𝛼 − 𝛼/cos𝛽)]"

4[𝑡𝑎𝑛 𝛽 (1 + 𝛼 − 𝛼/cos𝛽)]"  

 
( 12 ) 

𝑝# = 𝑝!(1 + 𝑅𝑡𝑎𝑛𝛽) + 𝑅𝑑 ( 13 ) 
 

where the hydrostatic pressure and the Von Mises equivalent stress are 
determined with the following equations, taking into account that the test is carried out 
using a cylindrical die: 

 

𝑝 =
1
3
(𝜎L + 2𝜎M) ( 14 ) 

𝑞	 = 	 |𝜎L 	− 	𝜎M| ( 15 ) 
 
where 𝜎L and 𝜎M are the radial and axial stresses exerted on the powder during the 
oedometer test. 

The oedometer tests were carried out in duplicate and at 4 different maximum 
pressures: 8, 22, 250 and 500 kgf/cm2. 
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4.2.3. ELASTIC PARAMETERS  

Since the DPC model is isotropic and the material is assumed to follow a linear 
law of elasticity, only two elastic parameters, E (Young's modulus) and ν (Poisson's 
coefficient), need to be characterised. These parameters can be obtained by oedometer 
testing in which their variation as a function of the bulk density of the material is 
determined from the axial/radial and axial stress/deformation unloading curves, 
respectively, using the following equations [13]: 

 

 
𝑑𝜎L
𝑑𝜎M

=
1 − 𝜈
𝜈

 ( 16 ) 

  

𝑑𝜎L
𝑑𝜀L

=
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 ( 17 ) 

 
 

where dσz, dσr and dεz are the increases in axial and radial stress and axial deformation 
during unloading.  

To determine the elastic parameters, the data obtained from the oedometer tests 
carried out to determine the yield surface “cap” were used (see Section 4.2.2). 
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5. RESULTS AND DISCUSSION 

5.1. OBTAINMENT OF THE SHEAR FAILURE SURFACE PARAMETERS 
The shear failure surface parameters were obtained with the procedure described 

in Section 4.2.1. Figure 6 shows the characterisation result after all the specimens 
prepared for uniaxial and diametral compression testing had been tested. 

Figure 7 shows plots of the mechanical strength, obtained by means of equations 
( 7 ) and ( 8 ) for both types of compression test, as a function of bulk density, calculated 
by means of dimensional analysis of the 400-mm-thick specimens and by using the 
mercury immersion method on the 8-mm-thick specimens. As can be seen, uniaxial 
mechanical strength is greater than radial strength in all cases. 

 
Figure 6. State of two porcelain tile specimens after the uniaxial compression 

test (left) and the diametral compression test (right). 

 
Figure 7. Mechanical strength of the spray-dried powder as a function bulk density, 

determined from uniaxial and diametral compression tests. 
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5.2. OBTAINMENT OF THE “CAP” YIELD SURFACE PARAMETERS 
The “cap” yield surface parameters were obtained using the procedure described 

in Section 4.2.2. Figure 8 shows one of the axial and radial pressure curves as a function 
of axial deformation from the load–unload cycle of an oedometer test with a maximum 
pressure of 500 kgf/cm2.  

 
Figure 8. Load–unload curve obtained with the die instrumented at a 

maximum pressure of 500 kgf/cm2  

 

Note how, as displacement increases, an exponential increase can be seen in both 
the stress exerted on the powder and the stress exerted by the powder on the die wall. 
After reaching the maximum compression pressure, axial stress is relieved, which also 
leads to a decrease in radial pressure. This figure also reveals a small rebound in the 
radial stress curve during the unloading stage, which is due to the design of the 
instrumented die, given that the piston rod transmitting the lateral stress of the powder 
to the load cell jammed slightly in the cross-through hole in the die due to the effect of 
a small inlet of powder between the piston rod and the sleeve during pressing. However, 
it should be noted that this rebound does not affect the determination of the “cap” yield 
surface parameters. 

Thus, oedometer testing can be used to determine the parameters of the “cap” 
yield surface with equations ( 11 ) – ( 15 ). Note that volumetric analysis enables the 
axial deformation of the powder (εz) to be related to its density. Thus, figure 9 and 
figure 10 show the evolution of parameters pa, pb and R as a function of bulk density. 
Note that, if an experiment with densities outside the range shown in both figures were 
simulated, extrapolation would be necessary. 
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Figure 9. Values of parameters pa and pb as a function of powder bulk density. 

 

 
Figure 10. Values of parameter R as a function of powder bulk density. 
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5.3. OBTAINMENT OF THE ELASTIC PARAMETERS 
The elastic parameters were determined as described in Section 4.2.3. Both 

Young's modulus (E) and Poisson's modulus (ν) are calculated from the unloading 
results of an oedometer test. Due to the oscillation observed in the unloading curves as 
a result of the die rod slightly jamming, equations ( 16 ) and ( 17 ) must only be used 
in the unloading range prior to rebound to determine the elastic parameters. 

Figure 11 shows how the elastic parameters, obtained for each of the 4 
oedometer tests performed in duplicate, evolve as a function of bulk density. Note that 
the bulk density for each pair of elastic parameters corresponds to the highest bulk 
density reached in the oedometer test. The figure shows that the higher the powder 
bulk density, the greater the error in predicting its elastic parameters. With respect to 
Poisson's modulus, such low values (<0.1) are unexpected in all cases, which is 
attributed to the low radial pressure exerted by the powder on the die (see figure 8). 

 

 
Figure 11. Values for the elastic parameters (E,ν) as a function of powder bulk density 
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6.  CONCLUSIONS AND FUTURE WORK 

In this study, a modified Drucker–Prager Cap (DPC) model has been calibrated to 
predict the behaviour of a bed of spray-dried porcelain stoneware tile powder during 
forming. Two specific dies were designed and built for the calibration process: an 
instrumented die to record the axial and radial pressure exerted by the powder during 
an oedometer test, and a floating die to form homogeneous specimens with a high 
aspect ratio (height/diameter). Using diametral and uniaxial compression tests, the 
radial and axial tensile strength of the material was determined as a function of its bulk 
density, which made it possible to define the material’s shear failure surface. 
Furthermore, by means of oedometer tests, the compression yield surface and elastic 
parameters of the material were obtained. The results show that the yield surfaces can 
be correctly defined as a function of bulk density in the higher density range, which 
implies the need to extrapolate the data in the lower density range. On the other hand, 
the unloading process during the oedometer testing could not be fully reproduced, as 
the piston rod used to determine radial pressure jammed slightly. Finally, once the DPC 
model had been calibrated, it was possible to use it to predict the forming process of 
porcelain stoneware tiles. Future work will aim to substantially improve prediction of 
the material’s elastic parameters by enhancing the design of the instrumented die in 
order to be able to record the full unloading process in oedometer testing. 
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